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Abstract—The first step in our sensing of smell is the conversion of chemical odorants into electrical signals. This happens when odorants
stimulate ion channels along cilia, which are long thin cylindrical structures in our olfactory system. Determining how the ion channels
are distributed along the length of a cilium is beyond current experimental methods. Here we describe how this can be approached as a
mathematical inverse problem. Precisely, two integral equations based mathematical models are studied for the inverse problem of deter-
mining the distribution of ion channels in cilia of olfactory neurons from experimental data. The Mellin transform allows us to write an
explicit formula for their solutions. Proving observability and continuity inequalities for the second integral equation is then a question of
estimating the Mellin transform of the kernel on vertical lines. For the first integral model, an identifiability and a non observability (in
some weighted L2 spaces) results are proven.

Keywords—Inverse problem, integral equation, ill-posed problem, Mellin transform

Resumen— El primer paso en nuestra percepción del olfato es la conversión de olores químicos en señales eléctricas. Esto sucede cuando
los olores estimulan los canales iónicos a lo largo de los cilios olfatorios, estructuras cilíndricas largas y delgadas en el sistema olfativo.
Determinar cómo se distribuyen estos canales iónicos a lo largo de un cilio supera los métodos experimentales actuales. Aquí describimos
cómo es posible abordar esta pregunta como un problema matemático inverso. Precisamente, se estudian dos modelos basados en ecuaciones
integrales para el problema inverso de determinar la distribución de los canales iónicos en los cilios de las neuronas olfativas, a partir de datos
experimentales. La transformada de Mellin nos permite escribir una fórmula explícita para sus soluciones. Demostrar las desigualdades de
observabilidad y continuidad para la segunda ecuación integral resulta así equivalente a estimar el núcleo de la transformada de Mellin de
la solución en líneas verticales. Para el primer modelo integral, se prueban resultados de identificabilidad y de no observabilidad (en ciertos
espacios de tipo L2 con peso).

Palabras clave— Problema inverso, ecuación integral, problema mal puesto, transformada de Mellin

INTRODUCTION

T he first step in sensing smell is the transduction (or
conversion) of chemical information into an electrical

signal that goes to the brain. Pheromones and odorants,
which are small molecules with the chemical characteristics
of an odor are found all throughout our environment. The
olfactory system (part of the sensory system we use to smell)
performs the task of receiving these odorant molecules
in the nasal mucosa, and triggering the physical-chemical

processes that generates the electric current that travels to
the brain. See Fig. 1.

What happens next is a mystery. Intuition tells us that
the electrical wave generated gives rise to an emotion in
the brain, which in turn affects our behavior. Of course, the
workings of our other four senses is similarly a mystery. And
so, we quickly come to perhaps one of the most fundamental
questions in neurosciences for the future: How does our
consciousness processes external stimuli once reduced
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Figure 1: Odorants reaching the nasal mucus (left) &
Structure of an olfactory receptor neuron (right)

to electro-chemical waves and, over time, how does this
mechanism lead us to become who we are?

How can we approach this problem with mathematics? Fa-
ced with these reflections, applied mathematicians take ti-
me to stop and wonder if it is possible to provide such far-
reaching phenomena with a mathematical representation that
allows us to understand and act. Biology is synonymous with
“function”, so the study of biological systems should start
by understanding the corresponding underlying physiology.
Consequently, to obtain a proper mathematical representa-
tion of the transduction of an odor into an electrical signal,
and before any mathematical intervention, we must first de-
tect which atomic populations are involved in the process and
identify their respective functions.

Transduction of olfactory signals

The molecular machinery that carries out this work is in
the olfactory cilia. Cilia are long, thin cylindrical structures
that extend from an olfactory receptor neuron into the nasal
mucus (Fig. 1).

The transduction of an odor begins with pheromones bin-
ding to specific receptors on the external membrane of cilia.
When an odorant molecule binds to an olfactory receptor
on a cilium membrane, it successively activates an enzyme,
which increases the levels of a ligand or chemical messenger
named cyclic adenosine monophosphate (cAMP) within the
cilia. As a result of this, cAMP molecules diffuse through
the interior of the cilia. Some of the cAMP molecules binds
to cyclic nucleotide-gated (CNG) ion channels, causing
them to open. This allows an influx of positively charged
ions into the cilium (mostly Ca2+ and Na+), which causes
the neuron to depolarize, generating an excitatory response.
This response is characterized by a voltage difference on one
side and another of the membrane, which in turn initiates
the electrical current. This is the overall process that human
beings share with all mammals and reptiles to smell and
differentiate odors.

Experimental techniques for isolating a single cilium
(from a grass frog) were developed by biochemist and
neuroscientist Steven J. Kleene and his research team at the
University of Cincinnati in the early 1990s [Kleene (1993);
Kleene and Gesteland (1991)]. One olfactory cilium of a
receptor neuron is detached at its base and stretched tight
into a recording pipette. The cilium is immersed in a bath of

a chemical known as cAMP (by its chemical initials). This
substance diffuses through the interior of the cilium, opening
the so-called GNC channels as it advances, and generating a
transmembrane electrical current. The intensity of the total
current is recorded.

Although the properties of a single channel have been able
to be described using these experimental techniques, the dis-
tribution of these channels along the cilia still remains unk-
nown, and may well turn out to be crucial in determining the
kinetics of the neuronal response. Ionic channels, in parti-
cular, CNG channels are called “micro-domains” in bioche-
mistry, because of their practically imperceptible size. This
makes their experimental description using the current tech-
nology very difficult.

Olfactory transduction via inverse modelling

Given the experimental and numerical difficulties, there is
a clear opportunity for fundamental mathematics to inform
biology. Determining ion channels distribution along the
length of a cilium using measurements from experimental
data on transmembrane current is usually categorized in
physics and mathematics as an inverse problem. Around
2006, a multidisciplinary team (which brought together
mathematicians with biochemists and neuroscientists, as
well as a chemical engineer) developed and published a
first mathematical model [French et al. (2006)] to simulate
Kleene’s experiments. The distribution of CNG channels
along the cilium appears in it as the main unknown of a
nonlinear integral equation model.

This model gave rise to a simple numerical method for
obtaining estimates of the spatial distribution of CNG ion
channels. However, specific computations revealed that
the mathematical problem is poorly conditioned. This is
a general difficulty in inverse models, where the corres-
ponding mathematical problem is usually ill-posed (in the
sense of Hadamard, which requires the problem to have a
solution that exists, is unique, and whose behavior changes
continuously with the initial conditions), or else it is unstable
with respect to the data. As a consequence, its numerical
resolution often results in ill-conditioned approximations.

The essential nonlinearity in the previous model arises
from the binding of the channel activating ligand (cAMP mo-
lecules) to the CNG ion channels as the ligand diffuses along
the cilium. In 2007, D. A. French and C. W. Groetsch intro-
duced a simplified model, in which the binding mechanism
is neglected, leading to a linear Fredholm integral equation
of the first kind with a diffusive kernel. The inverse mathe-
matical problem consists of determining a density function,
say r = r(x)> 0 (representing the distribution of CNG chan-
nels), from measurements in time of the transmembrane elec-
trical current, denoted I0[r]. This mathematical equation for
r is the following integral equation: for all t > 0,

I0[r](t) =
Z L

0
r(x) (c(t,x))dx, (1)

where is known as the Hill function of exponent n> 0 (see
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Figure 2: The Hill function

Fig. 2). It is defined by:

8w > 0, (w) =
wn

wn +Kn
1/2

.

In this definition, the exponent n is an experimentally deter-
mined parameter and K1/2 > 0 is a constant which represents
the half-bulk (i.e., the ligand concentration for which half
the binding sites are occupied); typical values for n in hu-
mans are n ' 2. Besides, in the linear integral equation abo-
ve, c(t,x) denotes the concentration of cAMP that diffuses
along the cilium with a diffusivity constant that we denote as
D; L denotes the length of the cilium, which for simplicity is
assumed to be one-dimensional. Here, by concentration we
mean the molar concentration, i.e., the amount of solute in
the solvent in a unit volume; it is a nonnegative real number.

Hill-type functions are extensively used in biochemistry to
model the fraction of ligand bound to a macromolecule as a
function of the ligand concentration and, hence, the quantity
(c(t,x)) models the probability of the opening of a CNG

channel as a function of the cAMP concentration. The dif-
fusion equation for the concentration of cAMP can be expli-
citly solved if the length of the cilium L is supposed to be
infinite. It is given by:

c(t,x) = c0erfc
✓

x
2
p

Dt

◆
,

where c0 > 0 is the maintained concentration of cAMP with
which the pipette comes into contact at the open end (x = 0)
of the cilium (while x = L is the closed end). Here, erfc is the
standard complementary Gauss error function,

erfc(x) := 1� 2p
p

Z x

0
e�t2

dt.

Accordingly, it is straightforward to check that c is decrea-
sing in both its variables and that it remains bounded for all
(t,x), 0 < c(t,x)6 c0.

Despite its elegance (by virtue of the simplicity of its for-
mulation), this new model does not overcome the difficulties
encountered in its non-linear version. In fact the mathema-
tical inverse problem associated to model (1) can be shown
to be ill-posed. More precisely, since (c(t,x)) is a smooth

mapping, the operator r 7! I0[r] is compact from Lp(0,L) to
Lp(0,T ) for every L,T > 0, 1< p<•. Thus, even if the ope-
rator I0 were injective, its inverse would not be continuous
because, if so, then the identity map in Lp(0,L) would be
compact, which is known to be false.

Non-diffusive kernels

This last result certainly has a more general character.
In fact, it is clear from its proof that any model based on a
first-order integral equation with a diffusive smooth kernel
necessarily results in the problem of recovering the density
from measurements of the electrical current being ill-posed.

An initial, natural approach to tackling this anomaly
in model (1) was developed in Conca et al. (2014). This
exploited the fact that the Hill function converges point-wise
to a single step function as the exponent n goes to +•,
the strategy was to approximate using a multiple step
function.

Based on different assumptions of the spaces where the
unknown r is sought, theoretical results of identifiability, sta-
bility and reconstruction were obtained for the corresponding
inverse problem. However, numerical methods for generating
estimates of the spatial distribution of ion channels revea-
led that this class of models is not satisfactory for practical
purposes. The only feasible estimates for r are obtained for
multiple step functions that are very close to a single-step
function or, equivalently, for Hill functions with very large
exponents, which imply the use of unrealistic models.

Another way to overcome the ill-posedness of the inverse
problem in (1) consists of replacing the kernel of the integral
equation with a non-smooth variant of the Hill function.

Specifically, let a2 (0,c0] be a given real parameter. A dis-
continuous version of is obtained by forcing a saturation
state for concentrations higher than a. By doing so, one is led
to introduce the following disruptive variant of (shown in
Fig. 3):

(c) = (c) c6a + a<c6c0 ,

where J denotes the characteristic function of the interval J.
The mathematical problem that recovers r from the electrical
current data is therefore modelled by

I1[r](t) =
Z L

0
r(x) (c(t,x))dx, (2)

where c(t,x) is still defined as before. The introduction of
this disruptive Hill function can be understood mathemati-
cally as follows: as t ! •, the factor x/

p
Dt in the comple-

mentary error function defining the concentration tends to 0,
and consequently c(t,x) tends pointwise to c0. An inverse
mathematical problem and a direct problem are associated
with both models (1) and (2). In the first, the electric current
is measured and the unknown is the density r of ion chan-
nels, while in the direct problem the opposite is true. Since
these are Fredholm equations of the first type, it is natural to
tackle them using convolution. Once the variable r has been
extended to [0,•) by zero, the Mellin transform is revealed
as being the most appropriate tool for carrying out this task
(see the overview section “Mellin transform” in Appendix).
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Figure 3: A disruptive variant of (a = 0,157)

A GENERAL CONVOLUTION EQUATION

The Mellin transform is the appropriate tool to study mo-
del (2). It allows to reduce it in a convolution equation of
the Mellin type. To do so, the key observation is the fact that
(c(t,x)) can be written in terms of

p
t

x . Indeed, defining G
as

G(z)
(def)
=

✓
c0erfc

✓
1

2
p

Dz

◆◆
,

we have I1[r](t) =
LR

0
r(x)G(

p
t

x )dx. Thus, by extending r by

zero to [0,•), and rescaling time t in t2, we obtain

I1[r](t2) =
Z •

0
xr(x)G

⇣ t
x

⌘ dx
x

=
⇣

xr(x)
⌘
⇤G

which is a convolution equation in xr(x).
Taking Mellin transform on both sides and using its ope-

rational properties, we formally obtain

1
2
M I1[r](s/2) = M G(s)M r(s+1)

or equivalently,

M r(s+1) =
1
2

M I1[r] (s/2)
M G(s)

. (3)

A priori estimates

Seeking continuity and observability inequalities for mo-
del (2) is then reduced to find lower and upper bounds for
M G(·) in suitable weighted Lebesgue’s spaces1. Doing so,
one obtains

Theorem 1 (A priori estimates) Let k 2N[{0} and r 2
be arbitrary. Assume that the Mellin transforms of r and
I1[r] satisfy (3), then

Ck
`krkL2

r
6 k(I1[r])(k)kL2

2k+ r�3
2

6Ck
ukrkL2

r
,

where

Ck
`
(def)
=

p
2infs2 r�1

2 +i

��� s
2
�

k M G(s)
��

Ck
u
(def)
=

p
2sups2 r�1

2 +i

��� s
2
�

k M G(s)
�� ,

1Details on the notation used for theses spaces are found in the Appendix
on the Mellin transform.

and Lp
q = Lp ([0,•),xq) stands for the Lebesgue space with

the weight xq, p > 1,q 2 .

Remark 1 It is worth noting that Ck
` ,C

k
u could a priori range

from 0 to +•.

Proof. Using the properties of the Mellin transform in equa-
tion (3), it follows that

(s� k)k M I[r](s� k) =
= 2(s� k)k M G(2(s� k)) M r(2(s� k)+1)

(4)

Thanks to Parseval-Plancherel’s isomorphism, for every s in
q+ i , we have
���(I[r])(k)

���
L2

2q�1

=

1p
(2p)

���(�1)k(s� k)k M I[r](s� k)
���

L2(q+i )
=

2p
(2p)

���(s� k)k M G(2(s� k))M r(2(s� k)+1)
���

L2(q+i )

=
2p
(2p)

���(s)k M G(2s)M r(2s+1)
���

L2(q�k+i )

=
1p
p

���
⇣ s

2

⌘

k
M G(s)M r(s+1)

���
L2(2(q�k)+i )

(5)

As M is an isometry from L2 (2(q� k)+1+ i ) on
L2

4(q�k)+1 (see Theorem 8 in the Appendix),

kM r(s+1)kL2(2(q�k)+i ) = kM r(s)kL2(2(q�k)+1+i )

=
p

2p krkL2
4(q�k)+1

.
(6)

Thanks to (5), (6) and the definitions of Ck
l ,C

k
u, we get

Ck
l krkL2

4(q�k)+1
6

���(I[r])(k)
���

L2
2q�1

6Ck
u krkL2

4(q�k)+1

Taking r = 4(q � k) + 1, that is q = k + r�1
4 , provides the

result.

OBSERVABILITY OF CNG CHANNELS

The a priori estimates in the theorem above also allow to
determine a unique distribution of ion channels along the
length of a cilium from measurements in time of the trans-
membrane electric current.

Theorem 2 (Existence and uniqueness of r) Let a> 0 and
r < 1 be given. If I1 2 L2([0,•), t

r�3
2 ), I01 2 L2([0,•), t2+ r�3

2 )
and a is small enough, then there exists a unique r 2
L2([0,•),xr) which satisfies the following stability condi-
tion:

kI1k
L2([0,•),t

r�3
2 )

+kI01kL2([0,•),t2+ r�3
2 )

>Ckrk
L2

r
,

where C > 0 depends only on a and r.

Proof. The proof is based on the following technical lemmas
and its corollaries :
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Lemma 1 Let A and B be two elements of [0,•], k 2[{0}N
be a nonnegative integer and f a function such that f ( j) is in
L1

j(A,B) for every j = 0, . . . ,k. For every real number t, we
have

Z B

A
f (x)xit dx =

k�1

Â
j=0

(�1) jQ j

h
x j+1 f ( j)(x)xit

iB

A
+

+(�1)kQk�1

Z B

A
xk f (k)(x)xit dx,

where Q j = Q j(t) =
⇣

’ j
l=0(1+ l + it)

⌘�1
.

Proof. We use induction on k 2N. For k = 0, since Q�1 = 1,
there is nothing to prove. We assume that the formula is true
for an integer k 2 N. As (k+1+ it)Qk = Qk�1, it remains to
prove that

(k+1+ it)
Z B

A
xk f (k)(x)xit dx =

h
xk+1 f (k)(x)xit

iB

A
�

�
Z B

A
xk+1 f (k+1)(x)xit dx

As d
dx xit = it

x xit , the previous relation follows by integration
by parts. Indeed, we have

it
Z B

A
xk f (k)(x)xit dx =

Z B

A
xk+1 f (k)(x)(xit)0 dx =

=
h
xk+1 f (k)(x)xit

iB

A
� (k+1)

Z B

A
xk f (k)(x)xit dx�

�
Z B

A
xk+1 f (k+1)(x)xit dx

Corollary 1 Let f : [A,B] ! with A,B 2 [0,•] be a pie-
cewise C1 function. If f is non-negative, f 0 is non-positive,
f 2L1(A,B), f 0 2L1

1(A,B) and for all t 2 : [x f (x)xit ]BA = 0,
then p

1+ t2
����
Z B

A
f (x)xit dx

����6
Z B

A
f (x)dx.

Proof. From Lemma 1 with k = 1 one obtains

8t 2 , (1+ it)
Z B

A
f (x)xit dx =�

Z B

A
x f 0(x)xit dx.

As A,B > 0 and f 0 6 0, using this previous identity twice, for
t 6= 0 and for t = 0, we get
p

1+ t2
����
Z B

A
f (x)xit dx

����6
Z B

A

��x f 0(x)
�� dx =

Z B

A
f (x)dx.

Lemma 2 Let n,K > 0,q 2 and f = erfcn

erfcn+K . There exists
xq > 0 such that the function gq : x 2 [xq,•) 7! f (x)xq�1 is
decreasing. Let eq= infEq where Eq = {c> 0 | g0q(x)< 08x>
c}. The function q 7! eq is increasing and eq = (q/(2n))1/2 +
o
�
q1/2� as q ! •.

Proof. As f > 0, the inequality g0q(x)6 0 is equivalent to

f 0(x)
f (x)

6�q�1
x

. (7)

Let us compute f 0
f . To do so, let u = erfcn, so that f = u

u+K .
We have

f 0

f
=

u0

u
K

u+K
= n

erfc0

erfc
K

u+K
(8)

Since erfc0(x) =�2p�1/2e�x2 , for x large enough, erfc(x) =
p�1/2x�1e�x2

+o
⇣

x�1e�x2
⌘

, and so

f 0(x)
f (x)

= n
erfc0(x)
erfc(x)

(1+o(1)) =�2nx+o(x) (9)

This asymptotic expansion proves that the inequality (7) is
satisfied for large enough values of x. As a consequence, for
every q in , the set Eq is not empty, which justifies the
definition of eq. Note that the definition of eq implies g0q(eq)= 0,

and hence, thanks to (7), f 0(eq)
f (eq) = � q�1

eq . Let q1 > q2 be two
real numbers. In order to show that eq2 6 eq1, it is enough to
prove that g0q1

( eq2)> 0. This holds true because

g0q1
( eq2) = eq2

q1�2( f 0( eq2) eq2 + f ( eq2)(q1 �1))>
eq2

q1�2( f 0( eq2) eq2 + f ( eq2)(q2 �1)) = eq2
q1�q2g0q2

( eq2) = 0.

To find an expansion for eq, let us recall the following classical
lower bound on erfc(x) for x > 0,

1
x+(x2 +2)1/2 6 1

2
p1/2 exp(x2)erfc(x).

As the function u = erfcn takes its values in (0,1], nK
1+K 6

nK
u+K 6 n. Consequently, the identities (8) yield

�n
⇣

x+(x2 +2)1/2
⌘
6 f 0(x)

f (x)
(10)

Let q > 1 and set xq = q�1
(2n)1/2(n+q�1)1/2 . The inequa-

lity � q�1
x 6 �n

�
x+(x2 +2)1/2� is equivalent to

x
�
x+(x2 +2)1/2� 6 q�1

n . A simple computation shows
that this inequality is satisfied for x = xq (and becomes
and equality). Thanks to (10), we conclude that xq satisfies
f 0(xq)
f (xq)

> � q�1
xq

, which leads to eq > xq, by definition of eq and
by (7). This last inequality implies that eq tends to +• as q
tends to +•. Finally, from (9), we get the asymptotic for eq,
namely

�2neq+o(eq) = f 0(eq)
f (eq) =�q�1

eq
This completes the proof of Lemma 2.

Proof of Theorem 2

We are now in a position to conclude the proof of Theo-
rem 2. To do so, we begin by introducing

J(x)
(def)
= (c0 erfc(x)) = f(x) x>a + 0<x<a ,

where f (x) = erfc(x)n

erfc(x)n+c�n
0 Kn

1/2
, a = erfc�1

⇣
a
c0

⌘
. A brief cal-

culation shows that G and J, and their corresponding Mellin
transforms are related as follows

G(x) = J
✓

1
2
p

Dx

◆
, M G(s) =

M J(�s)
2s
p

Ds
(11)

Thus, in terms of J, the equation (3) becomes

M r(s+1) = 2s�1pDs M I1[r] (s/2)
M J(�s)

(12)
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From the estimate for erfc at +•, given in the proof of Lem-
ma 2, the function J1 is in L1

k for every k > �1. Thus M J1
is holomorphic on the right half-plane, see Proposition 1 in
Appendix. Using Lemma 3.2 in [Bourgeron et al. (2018)] on
the vertical line 1�r

2 + i with 1�r
2 > 0, one deduces that

bounds for M J(�s) amount to estimate |sM J(s)| from abo-
ve or from below, on the vertical lines q+ i , for q > 0. The
Mellin transform of J at s = q+ it is given by

M J(s) =
Z a

0
xs�1 dx+ cn

0

Z +•

a
f (x)xs�1 dx =

=
as

s
+ cn

0

Z +•

a
f (x)xq�1xit dx.

For any a > 0,q > 0 and s 2 q+ i we have

|M J(s)|6 aq

q
+ cn

0

Z +•

a
f (x)xq�1 dx,

which is finite. Let q> 0. According to Lemma 2 the function
x 7! f (x)xq�1 is decreasing for x > x0. Let a < c0erfc(x0) so
that a = erfc�1 (a/c0) > x0. Let g(x) = f (x)xq�1

x>a . For
every t 2 ,

⇥
f (x)xit⇤•

x0
= 0 because f vanishes for x6a and

x0 6 a , and g(x) = p�n/2x�n+q�1e�nx2
+o

⇣
x�n+q�1e�nx2

⌘
.

Then Corollary 1 can be applied to the function g, with A =
a,B =+•, for s 2 q+ i , to give

|sM J(s)|6 |as|+ cn
0

|s|p
1+ t2

p
1+ t2

����
Z •

a
f (x) xs�1 dx

����

6 aq + cn
0 máx(1,q)

Z •

a
f (x)xq�1 dx < •,

because |s|p
1+t2

2 [q,1][ [1,q], either q 6 1 or q > 1. For

small values of a, the first term dominates the second one.
The same calculation as above leads to

|sM J(s)|> aq � cn
0 máx(1,q)

Z •

a
f (x)xq�1 dx.

This latter expression is equivalent to aq as a tends to +•,
so it is positive for large values of a . This finishes the proof
of Theorem 2.

UNSTABLE IDENTIFIABILITY, NON EXISTEN-
CE OF OBSERVABILITY INEQUALITIES

Since the French-Groetsch model is also a Fredholm inte-
gral equation of the first kind, it is natural to apply a Mellin
transform here too. This leads to interesting results: neither
an observability inequality nor a proper numerical algorithm
for recovering r can be established. However, a kind of iden-
tifiability result holds whenever the current is measured over
an open time interval (see Theorem 4 below).

Defining eG as

eG(z) =
✓

c0erfc
✓

1
2
p

Dz

◆◆
,

and rescaling time t in t2, we obtain a convolution equation
very similar to (3):

M r(s+1) =
1
2

M I0[r] (s/2)
M eG(s)

(13)

A close study of the transform of eG(s) allows us to establish
the following two theorems, which provide information
about the behavior of the inverse problem associated with
model (1). The proof of Theorems 3 and 4 below requires to
extend Mellin transform to functions in the Schwartz space
and to prove that the Mellin transforms of such smooth and
rapidly decreasing functions decay faster than polynomials
on vertical lines.

The starting point to do this is the following

Definition 1 Let S [0,•) be the Schwartz space of functions
f in C• ([0,•), ) which satisfy

8 j 2 N, k 2 N lı́m
x!•

f ( j)(x)xk = 0.

If f is a function in S ( ), then f x>0 is in S [0,•) (the
converse is also true thanks to Borel’s lemma).

Lemma 3 If f 2 S [0,•), then its Mellin transform M f is
holomorphic on the right half-plane, and 8q> 0 8k 2N there
exists C > 0 such that

|M f (q+ it)|6 C
(1+ t2)k/2 8t 2 .

Proof. Let f 2S [0,•), q > 0. By the definition of S [0,•),
for every l in N and k > �1 the function x 7! xk f (l)(x) is in
L1. Proposition 1 in the Appendix implies that M f is ho-
lomorphic on the right half-plane, and hence Lemma 1 with
g(x) = f (x)xq�1 yields

M f (q+ it) =
Z •

0
f (x)xq�1xit dx =

=
k�1

Â
j=0

(�1) jQ j(t)
h
x j+1g( j)xit

i•

0
+

+(�1)kQk�1(t)
Z •

0
xkg(k)(x)xit dx,

where Q j(t) =
✓

j
’
l=0

(1+ l + it)
◆�1

.

The proof of this Lemma will be finished if we show that
the terms between brackets vanish and that the last integral is
finite.

Let l,k 2 N. By the Leibniz rule, we have

xlg(k)(x) =
k

Â
j=0

✓
k
j

◆
f (k� j)(x)(xq�1)( j)xl =

=
k

Â
j=0

✓
k
j

◆
(q�1) j f (k� j)(x) xq+l�1� j.

For l = k+1 and for x = 0 this expression vanishes because
f (k� j)(0) is finite and q+k� j > q > 0. As x tends to +• the
expression tends to 0 as f (k� j)(x) xq+k� j ! 0. For l = k this
expression shows that the integral

R •
0 xk

���g(k)(x)
��� dx is finite

because for every j 2 {0, . . . ,k}, since x 7! xq�1+ j f ( j)(x) is
in L1 because q�1+ j > q�1 >�1. Thus,

|M f (q+ it)|6C |Qk�1(t)|=
C

(1+ t2)k/2 +o
✓

1
(1+ t2)k/2

◆
.

This completes the proof of Lemma 3.
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Theorem 3 (Identifiability & Non observability) Let r <
1 be fixed. Then

There exists C > 0 such that, for every r in L2
r , we have

kI0[r]kL2
r�3

2

6CkrkL2
r
.

For every non-negative integer k there exists no constant
Ck > 0 such that the observability inequality:

k(I0[r])(k)k
L2([0,•),t2k+ r�3

2 )
>CkkrkL2

r
,

holds for every function r 2 L2([0,•),xr).

Remark 2 Note that the above result shows that I0 2
L (L2

r ;L2
r�3

2
), and that if the inverse problem were identifica-

ble (i.e, I0 were injective), then I�1
0 could not be continuous.

Let us now observe that the model (1) can be seen as a
particular choice of the parameter a in model (2), precisely,
taking a = c0, model (2) becomes (1). In this case, let us
denote by J0 the function J, that is,

J0(x)
(def)
= (c0 erfc(x)) =

erfc(x)n

erfc(x)n + c�n
0 Kn

1/2
x>0.

Proof of Theorem 3. It is based on showing that M J0
decays faster than polynomially on vertical lines, and this
on the fact that J0 belongs to some Schwartz space. For the
proof that J0 belongs to S [0,•), the reader is referred to
Bourgeron et al. (2018) [Lemma 4.10].

As in the proof of Lemma 3.2 in the reference just quoted,
thanks to (5), (6), the inequalities:

���(I0[r])(k)
���

L2
2k+ r�3

2

>CkrkL2
r
, (14)

and

k(s)k M J0(�2s) M r(2s+1)kL2( r�1
4 +i ) >

>CkM r(2s+1)kL2( r�1
4 +i )

(15)

are equivalent (up to some explicit constants depending on
q,k). Furthermore, the same equivalence is true changing all
> signs to 6 signs. Thus, Lemmas 3 implies that |M J0| is
bounded from above on 1�r

2 + i so that (15), with 6 instead
of >, holds, which concludes the proof of the first statement.

To prove the second statement, let us assume by absurd
that there exists a constant C > 0 such that the inequality
(15) holds for every r 2 L2

r . Let s0 2 r�1
4 + i and d > 0. As

the map L2
r 3 r 7! M r(2s+1) 2 L2 � r�1

4 + i
�

is onto (in
fact it is an isometry up to a multiplicative constant), we can
find r 2 L2

r such that M r(2s+1) = s0+i[�d ,d ](s). For this
choice of r , (15) is localized in the following sense

1
2d

Z s0+id

s0�id
|M J0(�2s)|2 |(s)k|2 ds >C.

Thanks to Lemmas 3, and Lemma 4.10 in the reference quo-
ted before, J0 belongs to L2

q for every q > �1, and hence,

M J0 2 L2(eq+ i ) for eq > 0 (cf. Theorem 8). In particular,
|M J0(�2s)|2 |(s)k|2 is in L1

loc, so, letting d ! 0, the Lebes-
gue differentiation theorem shows that at almost every point
s0, we have

|M J0(�2s0)| |(s0)k|>C.

In other words |M J0| has at most a polynomial decay on ver-
tical lines 1�r

2 + i , which is a contradiction with Lemma 3.
This concludes the proof.

Theorem 4 (Identifiability) Let r < 0 and r 2 L1([0,•),xr)
be arbitrary. If there exists a nonempty open subset U of
(0,•) such that for all t 2U , I0[r](t) = 0, then r = 0 almost
everywhere on (0,•).

Proof. Lebesgue’s dominated convergence theorem for
analytic functions implies that I0[r] is an analytic function
on (0,•). For every x 2 [0,•), the function r (c(·,x)) is
analytic as erfc and all of its power functions are analytic.
For the domination part let h > 0. As for t > h we have that
for all x > 0, r(x) (c(t,x))6 r(x) (c(h ,x)), it remains to
show that r (c(h , ·)) is a L1 function. At +•, we have

(c(h ,x)) =
1

pn/2 2nDn/2hn/2x�n exp
✓
� nx2

4Dh

◆
+

+o
✓

x�n exp
✓
� nx2

4Dh

◆◆
,

so that
R •

1 r(x) (c(h ,x))dx is finite because r 2 L1
r .

At 0, (c(h ,0)) = (1 + c�n
0 Kn

1/2)
�1 > 0, and sin-

ce r 6 1,
R 1

0 r(x)dx 6 R 1
0 r(x)xr�1 dx is finite so thatR 1

0 r(x) (c(h ,x))dx is finite, too.

As I0[r] vanishes on U , the principle of permanence im-
plies that it vanishes on the connected set (0,•), i.e.,

8t 2 (0,•) I0[r](t) = 0.

Taking the Mellin transform of this relation, using (12), we
obtain

8s 2 r+ i ,
1

2s
p

Ds
M J0(�s)M r(s+1) = 0.

Thanks to Lemmas 3, and 4.10 in [Bourgeron et al. (2018)],
M J0 is holomorphic on the right half-plane, which contains
the line �r + i , because r < 0. The function M J0 is not
identically zero, so M J0 can vanish only on a set �Z ha-
ving no accumulation point. The previous relation implies
that M r = 0 on r+1+ i \ (1+Z). As r 2 L1

r the function
M r is continuous on the vertical line r+1+ i , so that M r
is identically zero on r + 1+ i . The Inversion Theorem 6
provides the result.

APPENDIX

Mellin transform

Austrian mathematician Robert Hjalmar Mellin (1854–
1933) gave his name to the so-called Mellin transform, who-
se definition and properties are recalled below. The interested
reader is referred to E. Lindelöf (1933) for a summary of his
work, and proof of the main results around this transform.
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For q 2 , q+ i will denote the vertical line {q+ it, t 2
} of the complex plane having abscissa q, and for p 2

(p > 1), Lp ([0,•),xq), or simply Lp
q , will stand for the Le-

besgue space with the weight xq, i.e.,

Lp
q =

n
f : [0,•)! | k fkLp

q
<+•

o
,

where k fkLp
q
= (

R •
0 | f (x)|pxq dx)1/p. Lp

q , endowed with this
norm, is a Banach space.

Let f be in L1 ([0,•),xq). The Mellin transform of f is a
complex-valued function defined on the vertical line q+1+
i by

M f (s) =
Z •

0
xs f (x)

dx
x

From its very definition, it is observed that the Mellin trans-
form maps functions defined on [0,•) into functions defined
on q+ 1+ i . Like in the Fourier transform, M f is conti-
nuous whenever f is in L1 ([0,•),xq). Specifically, we have

Theorem 5 (Riemann-Lebesgue) The Mellin transform is
a linear continuous map from L1 ([0,•),xq) into C 0(q+1+
i ; ) ,! L•(q+1+ i ; ); its operator norm is 1.

Proposition 1 If f is in L1
q for every real number q in (a,b),

then its Mellin transform M f (·) is holomorphic in the strip
S = {s 2 | a+1 < Re(s)< b+1}.

The following table summarizes the main operational pro-
perties of the Mellin transform:

function Mellin transform
f (at), a > 0 a�sM f (s)
f (ta), a 6= 0 |a|�1M f (a�1s)

f (k)(t) (�1)k(s� k)kM f (s� k)

where, 8x 2 and 8k > 1, (x)k stands for the so-called
Pochhammer symbol, which is defined by

(x)k = x · · ·(x� k+1) =
k�1

’
j=0

(x� j) if k > 1,

and (x)0 = 1, where x is in .

Theorem 6 (Inversion Theorem) If f is in L1
q and if

kM fkL1(q+1+i ) is finite, then one can define

M�1
q f (x) =

1
2p

Z
f (q+ it)x�(q+it) dt.

The Inversion Theorem states that

f = M�1
q+1(M f ) a.e. in (0,•).

Mellin convolution

For two given functions f ,g, the multiplicative convolu-
tion f ⇤g is defined as follows

( f ⇤g)(x) =
Z •

0
f (y)g

✓
x
y

◆
dy
y

Theorem 7 (Mellin transform of a convolution)
Whenever this expression is well defined, we have

M ( f ⇤g)(s) = M f (s)M g(s)

Finally, the classical L2-isometry has his Mellin counter-
part, namely

Theorem 8 (Parseval-Plancherel’s isomorphism) The
Mellin transform can be extended in a unique manner to a
linear isometry (up to the multiplicative constant (2p)�1/2)
from L2

2q�1 onto the classical Lebesgue space L2(q+ i ).
Thus,

M 2 L
�
L2

2q�1;L2(q+ i , dx)
�
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