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Abstract—Strategies attempting to reduce the impact of Covid19 attempted harnessing available geo-spatial, demographic, and beha-
vioural data. Such data has shown to be extremely useful for identifying drivers behind the transmission of the disease. In this article, we
develop a toy model emulating the spatial and demographic features of Santiago de Chile, quantify the presence and interaction among
different groups in the different spaces defined by the model, and show that effects of the infection dynamics are hidden in the infection
data that is usually fitted. In partiucular, we show that the distribution of contagion rates among different sectors distributes as a power-law
regardless of the pandemic situation (outbreak vs full spread), and that the power-law distribution strongly depends on a social segregation.
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Resumen— Las estrategias que intentan reducir el impacto de Covid19 intentaron aprovechar los datos geoespaciales, demográficos y de
comportamiento disponibles. Dichos datos han demostrado ser extremadamente útiles para identificar las razones detrás de la transmisión de
la enfermedad. En este artículo, desarrollamos un modelo de juguete que emula las características espaciales y demográficas de Santiago de
Chile, cuantificamos la presencia e interacción entre diferentes grupos en los diferentes espacios definidos por el modelo y mostramos que
hay efectos espaciales de la dinámica de infección que están ocultos en las tasas de infección que se ajustan desde los datos. En particular,
mostramos que la distribución de las tasas de contagio entre diferentes sectores se distribuye como una ley de potencia independientemente
de la situación de pandemia (brote vs propagación total), y que la distribución de la ley de potencia depende fuertemente de un parametro
que mide la segregacion social.

Palabras clave— Biomatemática, Biología Matemática, Ecología Matemática, Epidemiología Matemática, Biotecnología Matemática

INTRODUCTION

I hyroid Identifying strategies to control the spread of Co-
vid19 or future epidemics is a major challenge in mathe-

matical biology. On the one hand it is necessary to optimize
not only the prevention of new cases but also the well-being
of people. On the other hand, strategies must be feasible from
a logistic and political perspective. Hence, generating models
that allow estimating the dynamics of an epidemic is an ur-
gent endeavour in our new context of global pandemics (PhD
et al., 2020; Haug et al., 2020; Prem et al., 2020; Gozzi et al.,
2021).

Meta-population models (Calvetti et al., 2020) are spe-
cially suited to meet the abovementioned challenge. Namely,
these models are able to consider multiple interaction sectors
and establish different dynamics within them. These interac-
tion sectors are not restricted to be defined by spatial condi-
tions only. They can incorporate other sources of information
that are relevant to specify how interactions occur. Examples
of these can be whether the place is a restaurant or a park,
whether the interaction sector is restricted to certain popula-
tion conditions, (school, hospital, or areas that can only be
reached by car), and determine different infection rates and
types of interaction depending on the behavioural patterns
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of people within and across sectors over time (Shinde et al.,
2020; Lauer et al., 2020; Eubank et al., 2020; Chang et al.,
2021; Gozzi et al., 2021).

As an example of our approach, we develop a meta-
population model based on the SEIR model inspired in the
case of Santiago, Chile, assuming n = 5 spatial sectors which
aggregate groups of sectors of different income, and the non-
homogeneous inter-sector mobility of the city, and study the
distribution of rates of infection corresponding to different
kinds of interaction. Namely, for an interaction to take place
we define three spatial sector indexes: one corresponding to
the address of the susceptible individual, another correspon-
ding to the address of the infected individual, and another
corresponding to the location at which the interaction takes
place. Therefore, the rate of interaction is a 3-dimensional
tensor, so-called impact tensor.

Interestingly, we show that the distribution of infection ra-
tes of the impact tensor distribute as a power law irrespecti-
ve of the pandemic situation (outbreak or spread infection),
and explore the influence of a sociual segregation parameter
which modulates how likely is to have an interaction among
different social (inmcome) groups. This work is of explora-
tory nature, after showing the model and our numerical re-
sults we present a discussion with possible ways to extend
this work.

A METAPOPULATIONS EPIDEMIC MODEL

The SEIR model

In order to introduce the reader to the epidemiologic mo-
delling we will introduce the most common epidemiologic
model, which does not consider metapopulations, but a co-
llection of people interacting in a single sector by means
of a deterministic Susceptible-Exposed-Infected-Recovered
(SEIR) compartmental model (Li and Muldowney, 1995)
(see Fig. 1). Susceptible individuals experience an incuba-
tion period (the ’exposed’ state), such that the individual is
infected but not yet infectious for a significant period of time.

Fig. 1 shows how individuals transit through the compart-
ments representing different epidemic states in the model.

The parameter β corresponds to the probability of trans-
mission of the disease given an interaction between a sus-
ceptible and an infectious individual. The incubation rate, σ ,
is the rate of latent individuals becoming infectious (average
duration of incubation is 1

σ
). Recovery rate, γ = 1

D , is deter-
mined by the average duration, D, of infection.

The equations that rule the evolution of the system are de-
duced from the following assumptions:

β depends on the virus type only and thus is constant.

The rate of interaction events for a susceptible indivi-
dual is proportional to the density of infected people in
the sector, given by I

N .

The equations of the SEIR model are thus

Ṡ =−β
SI
N

Ė = β
SI
N
−σE

İ = σE− γI

Ṙ = γI

(1)

This infection dynamics of eq. (1) is a coarse approximation
of a realistic epidemic situation because it assumes random
mixing of people, and that the success rate of infection is
independent. One common way to overcome this unrealistic
assumption is to define a saturated infection rate Sun and Min
(2014)

Ṡ =−β
SI

1+αI
(2)

where α is a parameter which measures the maximum
amount of infection events that can occur per time unit. Ho-
wever, saturation rate might depend on factors that modulate
the way people interact with each other such as age, behavio-
ral attitudes, and time and space dependency of the popula-
tion density (Takeuchi et al., 2000; Rohith and Devika, 2020;
Kumar et al., 2020). We will thus make use of a metapopu-
lations model in order to incorporate the latter aspect in this
paper.

Metapopulations and effective populations

In a metapopulation model, we start from a population N
inhabiting different sectors i = 1, ...,n. For simplicity we as-
sume no birth occurs. For each sector i = 1, ...,n, we define
Si(t),Ei(t), Ii(t),Ri(t) as the amount of susceptible, exposed,
infected and recovered inhabitants of sector i, respectively, at
time t. Note that Si(t)+Ei(t)+ Ii(t)+Ri(t) = Ni(t) is cons-
tant, and ∑

n
i=1 Ni(t) = N.

Since inhabitants of each sector can move to other sectors
for their daily activities, we assume that a proportion Pi j(t)
of population from sector i is in sector j at time t. Clearly,
Pii(t) corresponds to the proportion of inhabitants that stay at
their own sector at time t. Pi j(t) is called mobility matrix.

Since the rate of infection in the SEIR model is propor-
tional to the density of infected individuals in a sector, and
Pi j(t) implies a change of suchg density over time, we need
to obtain the effective populations of the different epidemic
states at each sector. The total effective population of each
sector i, denoted by N̄i(t), corresponds to the total popula-
tion of sector i minus its outflow to other sectors plus the
inflow of populations from other sectors. Hence:

N̄i = Ni−∑
j 6=i

Pi j(t)Ni +∑
j 6=i

Pji(t)N j

= Ni−

(
n

∑
j=1

Pi j(t)Ni−Pji(t)N j

) (3)

Note that in the right hand side of (3), the term Pii(t)Ni is
added and subtracted, helping to simplify the presentation of
the formula. However, it is possible to rewrite Eq. (3) in a
simpler way by counting only those staying at sector i plus
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Figure 1: SEIR compartmental model.

the inflow from other sectors:

N̄i = NiPii(t)+∑
j 6=i

N jPji(t) =
n

∑
j=1

N jPji(t) (4)

Similarly, the infected effective population of sector i is given
by

Īi =
n

∑
j=1

I jPji(t), (5)

ssible ways in which incoming and outgoing groups can in-
teract.

Mobility and demographics driven infection rates

In order to calculate the rate of infections in our metapo-
pulation model, we must take into consideration that the in-
fection event in formula (1) involves three entities that are
now indexed by a sector coordinate. Namely, one coordina-
te denotes the sector associated to the susceptible individual,
another coordinate denotes the sector of the infected indi-
vidual, and another coordinate denotes the sector at which
the interaction takes place. Hence, consider a sector k at ti-
me t, and let’s estimate the rate pi jk of interactions between
the susceptible population from sector i (given by Pik(t)Si(t))
and the infected population from sector j (given by PjkI j(t)),
out of a total of people in sector k (given by N̄k). In order to
make our model reasonable with respect to mobility and for
incorporating an example of how demographics changes the
interactions we assume the following:

Inhabitants of each sector i = 1, ...,n can be at home or
not at home, and a parameter 0≤ λi(t)≤ 1 regulates the
proportion of people from sector i at home during the
course of a day.

Mobility of people being not at home, from sector i to
sector j is ruled by Pi j(t).

Each sector is associated to an income group which can
be Low, Middle, or High, and there is function gi j(s)
which weights the relative amount of interactions bet-
ween the different groups given by

gi j(s)=


1 if i and j are of same income group
s, if i and j are of neighboring income groups
s2, if i and j are of distant income groups

(6)

Interactions at home are ruled by a saturated dynamics
(see eq. 2) with saturation parameter α , while interac-
tions not at home are ruled by a mass-action dynamics
(see eq. (1)).

Following these assumptions, we specify pi jk(t) in consis-
tency with the assumptions as follows

pi jk(t)=

 βSi(t)Ii(t)P2
ii (t)

(
λ 2

i (t)
1+αIi(t)

+ (1−λi(t))2

N̄i(t)

)
, if i = j = k

βgi j(s)Si(t)I j(t)Pik(t)Pjk(t)
(1−λi(t))(1−λ j(t))

N̄k(t)
,else

(7)
Note that pi jk(t) depends on the choice of parameters α,

and s, and the shape of λi(t) and gi j(s). Different choices of
these parameters correspond to different modeling situations.
In order to obtain the contagion rate per sector, note that

n

∑
j,k=1

pi jk(t) (8)

indicates all the possible ways in which susceptible indivi-
duals from sector i can get infected. Therefore, the SEIR
system of equations (1) can be easily extended to its meta-
population version as follows:

dSi

dt
=−

n

∑
j,k=1

pi jk(t)

dEi

dt
=

n

∑
j,k=1

pi jk(t)−σEi

dIi

dt
= σEi− γIi

dRi

dt
= γIi

(9)

This model is equivalent to the SEIR model for the incu-
bation and recovery dynamics, but since the contagion dyna-
mics is modified by the fact that the infection event can occur
in different sectors, and those events depend on the mobi-
lity, occupation of spaces and social differences, we call it
‘SEIR∗’. Note that the solution of the SEIR∗ model delivers
the number of individuals at each epidemic-state at each sec-
tor over time. Since population data, infection data collec-
ted by authorities, demogaphic and mobility data collected
by phone companies is associated to each person’s home ad-
dress, the SEIR∗ model is compatible with high spatial reso-
lution data.

AN EXAMPLE OF SEIR∗ BASED ON SANTIAGO
DE CHILE

The following example is inspired in the population and
mobility structure of Santiago, Chile. We will use this exam-
ple to illustrate the SEIR∗ model and the features of the im-
pact tensor.
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City structure and Population

Our model of Santiago corresponds to a division of its
counties (comunas) into five sectors representing clusters ha-
ving similar mobility and social-interaction-pattern structu-
res. Our model of Santiago is composed by a central down-
town sector (i = 2) surrounded by east (i = 0), north (i = 1),
west (i = 3) and south (i = 4) sectors, such that the west,
north, and south sectors, contain a large population having
middle, low, and low income on average respectively, and
that do not receive too many people from other sectors due
to the lack of jobs and places of interest. Those populations
tend to mobilize to the other two sectors for work and shop-
ping. Those other two sectors, east and central, with high and
medium income on average respectively, accumulate the ma-
jority of work places and concentrate the tourism and places
of interest in general. Thus, the populations of these two sec-
tors either move between each other or stay at their own sec-
tor. In addition, social-interactions are less frequent across
groups of less similar average income.

Figure 2: Sectorial division of Santiago, Chile. Color indicates a
sociological variable that is correlated with average income of the
sub-sector, where dark green indicates highest income and orange

indicates lowest income.

Therefore, we have that

gi j(s) =


1 1 s s2 1
1 1 s s2 s
s s 1 s s
1 1 s s2 1
1 1 s s2 1

 . (10)

The segregation parameter s helps to differentiate social
structures with low segregation, i.e. where high and low in-

sector Ni Mobility tendency ave. income
0 1.5M {2,3,1,4} Low
1 1.3M {2,3,0,4} Low
2 0.7M {3, [0,1,4]} Middle
3 1.1 {2, [0,1,4]} High
4 1.8 {2,3, [0,1]} Low

Figure 3: Description of our mobility and social income model.
First column indicates sector, second column indicates population,

third column indicates mobility preference (sectors in brackets
there is equal preference), fourth column indicates average income.

come people occupy the same spaces, and thus interaction
patterns do not depend on income (case s ∼ 1), and social
structures with high segregation, i.e. where high and low in-
come people do not encounter in the same spaces, and thus
interaction patterns strongly depend on income (case s∼ 0).

Inter-sector daily mobility model

Inter-sector mobility changes over the course of the day.
Thus, we will assume that mobility increases linearly from
4am to 16pm, and decreases linearly between 16pm to 4am,
reaching not mobility at 4am.

For simplicity, we will re-scale time, so the hours of the
day run cyclically between 0 and 1, with 4am corresponding
to 0 and 16pm corresponding to 1

2 .
Hence, the proportion of people moving from sector i to

sector j at time t is given by Pi j(t) with 0≤ t ≤ 1, with

Pi j(0) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

= 1, (11)

when no mobility is happening, i.e. everyone at home, and

Pi j

(
1
2

)
=


0,4 0,1 0,25 0,2 0,05
0,1 0,4 0,25 0,2 0,05
0,1 0,1 0,5 0,2 0,1

0,05 0,05 0,2 0,65 0,05
0,05 0,05 0,25 0,25 0,4

 , (12)

For the peak mobility moment of the day at 16pm. Since the
change of mobility for 0 ≤ t ≤ 1

2 increases linearly, and de-
creases symmetrically between 1

2 ≤ t ≤ 1, we have that in
general

Pi j(t) = Pi j(0)−h(t)
(

Pi j(0)−Pi j

(
1
2

))
, with

h(t) =
{

2t if 0≤ t ≤ 1
2

2−2t, if 1
2 ≤ t ≤ 1

(13)

Effective populations

The effective populations defined by (3) evolve during the
day as shown in figure 4

Note that in fig. 4 sectors k = 2 and k = 3 have a high po-
sitive variation in their effective populations while other sec-
tors have a negative variation. Indeed, population in sectors
k = 2 and k = 3 increase nearly 2.5 and 1.5 times respecti-
vely, while the decrease of population in other sectors ranges
between 0.6 and 0.7.

Another interesting phenomena that can be observed in
fig. 4 is that the effective populations of sectors 2 and 3 beco-
me larger than the effective population of other sectors at dif-
ferent times. For example, N̄3 > N̄1 around 6am, and N̄3 > N̄4
around 9am, and due to our symmetric assumptions this is re-
versed at 2am and 23pm respectively. The latter implies that
not only the effective population radically changes over time,
but also that there are certain moments at which the effective
population changes structurally, i.e. the ordering of sectors in
terms of effective population changes.
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Figure 4: Population structure over the course of one day. Left:Effective populations. Right: Ratio between effective and total population.
Colors k = 1, ...,5.

Figure 5: Effective populations from each sector at each sector.
Left: 10am. Right: 16pm (peak mobility time).

In figure 5 we can observe the effective population from
each sector at each other sector, i.e. the matrix Pi j(t)Ni at
two different times of the day. The assumption that sectors 0,
1, and 4 do not receive several people from other sectors, as
well as the fact that sectors 2 and 3 have a more homogeneous
population structure (specially 2), can be clearly seen in the
right subfigure.

A first look on the distribution of infection rates

Since we observe that mobility induces major changes in
the effective populations, we are interested in seeing the way
in which the infection rates distribute in different circums-
tances. As a first attempt to understand such distributions,
we will illustrate the difference of the distribution of rates
at the moment of highest mobility (16pm) in two pandemic
situations. The first situation corresponds to an outbreak in
sector 3 (as it happened in reality), and we represent it by
having 120 infected individuals in sector 3, and only 20 in-
fected individuals in each of the other sectors. The second
situation emulates dispersion of the epidemy, and is repre-
sented by having 1% of the population infected in all sectors
equally.

In fig. 6 we plot the distribution of rates of both situations
choosing s = 1. There are various interesting aspects to men-
tion about the plots. Before doing so we must mention that
in order to obtain a 2D plot of an object which depends on 3
spatial indexes, we defined the following (bijective) function
to represent the triplets representing the rate pi jk

d(i, j,k) = (i+5 j+25k) (14)

The function d generates an index ranging from 0 to 124
to represent all possible combinations of triplets {i, j,k}with
i = 0, ...,4. Hence, we do not have a direct view on the sector

triplets where the distribution peaks. Thus, we will focus on
general properties of the distribution rather in the values for
specific triplets.

Regarding the shape of the distribution, first notice that in
both the outbreak and dispersed situation the majority of tri-
plets {i, j,k} have a small associated rate, and only a few co-
llections of triplets accumulate reach high values. This is an
indication that the distribution of reaction rates might exhi-
bit a power-law distribution. The latter is more clearly seen in
the left orange curves. The power-law like distribution should
not be unexpected for an outbreak situation, as most infected
individuals are concentrated in a single sector and thus it is
rare to encounter significant infection rates away from the in-
teraction zone of sector 3. However, for the dispersed case we
obtain a very similar distribution pattern, although the peaks
can be seen to be different from those at the outbreak. This
is a rather unexpected result because simple reasoning would
indicate that in the situation of dispersion the infection rates
should tend to homogeneize. However, we still see a strong
accumulation in only some triplets. In order to better com-
prehend this aspect we take look to the right plots in fig. 6
which show the sorted (from larger to smaller) infection rates
in log-scale. We observe that a linear curve provides a good
approximation to the log-data, and that although the distribu-
tion in the dispersion case is fitted with a smaller slope than
in the outbreak situation (which indicates that infection rates
are more homogeneous in the case of dispersion), still the li-
near fit provides a good approximation. It is indeed of special
interest the fact that in both cases the triplets with highest
contagion rates (at the left of the curve) follow a different
slope than the rest of the curve. We could perhaps provide
a much better approximation of the data with a bi-modal li-
near approximation, one with higher slope in which all the
high infection rate events concentrate, and another where the
linear decay tendence is observed for the rest of the sectors.

In order to evidence the dependency of the results with the
social segregation parameter, we rebuild these plots for the
case s = 0,4 and plot them in fig. 7.

The case s = 0,4 in the case of the outbreak exhibits a
completely different profile than in the case s = 1, which can
be seen in the right top plot in fig. 7. Namely, the profile does
not resembles a linear curve, but instead a tri-modal form,
one first part with high slope and high values, then a middle
flat zone, and finally a high slope with small values. This is
coherent with the fact that the interaction patterns are very
different for the three social groups. The case of epidemic
dispersion looks again like a power-law distribution, but with
a much higher slope than in the case s= 1. This indicates that
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Figure 6: Distribution of infection rates when s = 1. Upper row
corresponds to an outbreak situation, lower row corresponds to a
situation of epidemic dispersion. The blue curves in the left plots
display on the x−axis the triplet i, j,k by associating it to d(i, j,k)

defined in (14), and the y−axis shows the value pi jk for the
corresponding triplet. The orange curve shows how the distribution

looks when sorted (irrespective of the indexes associated to the
blue curve). The blue curve of the right plots show the log of the
sorted rates, and the green curve shows the best linear fit of such
sorted distribution as well as the values of slope (a) and intercept

(b) that make such best fit.

Figure 7: Distribution of infection rates when s = 0,4. Same
description as in fig. 6

.

the sector triplets which are mostly responsible for the global
contagion rates are much more highly concentrated in some
specific interactions.

We conclude from this simple view that there seem to be a
pattern of few specific triplets which regardless of the pande-
mic situation would have much higher kinetic rates than the
large majority of other triplets. Therefore, mitigation strate-
gies, i.e. interaction restrictions, could profit from this infor-
mation to minimize the number of people participating in the
mitigation strategy while maximizing the decrease of the in-
fection rate. Moreover, the fact that in the case s = 0,4 we
see that the slope approximating the log-curve of infection
rates is higher than in the case s = 1, implies that efficient
mitigation strategies could even be even more successful in
the case of high social segregation.

DISCUSSION

The results shown in this article open a large number of
possible venues to explore First, the epidemic states and the
features defining the individuals could be generalized. In this
case we used the SEIR epidemic states, and applied only spa-
tial and a social segregation parameter to identify popula-
tions. We could include age, sex, comorbilities, and several
other demo demographic features, mobility profile, tendency
to apply self-care measures, among others. Similarly, sec-
tors could indicate sector use (grocery, store, park, restaurant,
etc.). Therefore, we plan to extend our notation to incorpo-
rate these complexifications and thus represent the most ad-
vanced metapopulation models in a single framework (Fritz
and Kauermann, 2020; Chang et al., 2021).

Second, we only worked out two pandemic situations but
not the dynamical evolution of the system. This could be do-
ne by implementing the differential equations in a compu-
tational simulation, or by analytical studies.

Third, in case of trying to fit epidemic data we have that
metapopulation models are multiparametric and non-linear,
implying potentially strong sensitivity to parametric modifi-
cations, a change in parameters corresponding to a counter-
factual measure, with respect to two parametric calibrations
that fit equally good the known data, might lead to opposi-
te conclusions. Therefore, it would be interesting to develop
structural indicators, such as the slope of the sorted contagion
rate curve (fig 7) or other aggregated indicators that might
help to understand the dynamic of the pandemic.

We believe that explanatory mechanisms about the infec-
tion dynamics that take into consideration not only the epide-
mic time-series, but also the evolution of the multidimensio-
nal (geo-spatial, demographic, behavioural, etc.) structure of
relevant events (infections, deaths, etc.) leading to the obser-
ved time-series shall be developed. We plan to do so in future
work.
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