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RESUMEN 

El objetivo principal de este trabajo es la crea-
ción y el diseño de un robot controlado por RL 
(Reinforcement Learning), resolviendo éste a 
través del motor de física MuJoCo, para luego 
ser contrastado con una implementación de un 
robot real en el laboratorio, cuidando un as-
pecto clave en su funcionamiento operativo: la
energía consumida, cómo funciona y cómo 
abordamos su valor por acción o tarea realizada. 

Palabras clave: robótica, aprendizaje por 
refuerzo, aprendizaje automático

ABSTRACT 

The main objective of this work is the creation 
of a simulation from the design of a real robot 
controlled by RL (Reinforcement Learning), sol-
ving this through the MuJoCo physics engine, 
to finally be contrasted with the real robot, 
taking care of a key aspect in its operation: 
the energy consumed. In this application we 
will see how the manipulator works with the 
reward, and how we address its value per action 
or task performed.

Keywords: robotics, reinforcement learning, 
machine learning
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I. INTRODUCTION 

Nowadays, due to the most advanced develo-
pment in robotic applications, it is necessary 
to study in a more detailed way the behavior of 
robotic systems and their structure, so that it is 
possible to obtain predictable and increasingly 
sophisticated  behaviors. One of the challenges 
is to achieve repetitive tasks in such a way that 
they can be implemented through software to 
perform various virtual simulations, optimi-
zing  the resources available for these tasks and 
taking care of the integrity of people as well, 
because during the pandemic this became 
much more important, remote management 
and the protection of the person [1].

In this aspect, the research will aim at designing 
and simulating robots that have the ability to 
perform tasks in an autonomous and innovative 
way, through the integration of artificial intelli-
gence algorithms as the main axis, taking into 
account and evaluating some crucial aspects, 
such as their operational capabilities, higher 
fidelity control and collision safety, etc. This 
will be done through repeated computational 
simulations, which is where the general study 
of this topic willfocus, to then  be contrasted 
with an implementation of a real robot in the 
laboratory.

II. METHOD

A. General aspects of the framework

This environment is based on the MuJoCo phy-
sics engine [1], and for ease of implementation, 
we used the MuJoCo- based infrastructure 
called “Robosuite”, containing a multi- tude of 
elements (robots, room, controllers, objects, 
etc.) that make its native structure modular, 
providing versatility in the creation of envi-
ronments and customized robots [2].

Fig. 1. Robosuite framework.

B. Task to solve

The tasks to be implemented are composed 
first of a robot, a table, an object on it (in this 
case a small cube) and a target or reference 
to move towards, as well as a box on the table 
where the target is located. This environment 
can be customized with any element required, 
including the robot designed for this purpose. 
An example of this is the environments in 
figures 2 and 3.

In the following image the customized robot is 
shown in the environment also created by us, 
but we have not yet been able to do tests with 
it. In the results obtained we trained a robot 
called ”Panda” and in others a robot exported 
from GYM [5] called ” Fetch”.

Fig. 2. Enviroment with a cube and a reference.
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Fig. 3. Environment with a cube and a box for reference.

C. Reward and cost function

To implement the reward, several aspects were 
taken into account, among them is that the 
task is completed with a follow-up of ”steps” 
(stages) to which a small percentage reward 
is assigned to each one, which is determined 
according to the fulfillment of them; These 
stages are composed by the first one, called 
”Reaching” corresponds to the Euclidean dis-
tance that exists between the midpoint of 
the gripper and the object (the cube on the 
table). Then, the next stage is called ”Gras-
ping” which corresponds to when the gripper 
manages to grasp the object so that it can be 
lifted, and finally the ”Lifting” stage that would 
move the grasped object to the target (where 
there is a red ball as a reference). The following 
code is a brief description of how the logic of 
the stages is approached.

D. Algorithm

For this environment, as previously mentioned, 
it is nec- essary to work with a continuous 
space algorithm, so for this case the al-
gorithms provided by the Stable Baselines 3 
library [3] were implemented, choosing DDPG, 
SAC and TD3, with which training was carried 
out to perform experiments to determine the 
behavior of the environment.

III. RESULTS

The following images represent different ex-
periments with each algorithm to which the 
environment has been subjected, where the 
first one corresponds to the difference between 
continuous space algorithms with respect to 
the reward, and the second one represents the 
comparisons made by increasing the simulation 
times from 500 to 1000 timesteps, and also the
differences between applying or not applying 
a cost function as those presented in the 
figures 4 and 5.

Fig. 4. Reward obtained through various algorithms.
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Fig. 5. Reward obtained through different episodes and timesteps.
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