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ABSTRACT

The basic reproduction number, denoted as R0, is a crucial parameter in infectious disease modeling and serves as a key
element for designing control strategies.
Calculating R0 can be challenging in certain situations due to the complexity of the model. This complexity often hinders the
explicit computation of R0 and makes it difficult to understand how different populations and parameters influence its value.
Recent research has introduced the concept of the target reproduction number as an alternative to R0 (Shuai et al., 2013).
The target reproduction number demonstrates how it is possible to exert control over the entire system, by analyzing some
subsystems that describe the behavior of an infectious disease, it is possible to exert control over the entire system. The target
reproduction number offers a framework for making decisions in public health. In this study, we apply it to two models:
a model involving incomplete vaccination and a model for leptospirosis. The presented models showcase two fundamental
features of the target reproduction number. Firstly, its expression’s simplicity compared to the basic reproduction number.
Secondly, its behavior analogous to R0 at 1.

Keywords:

Target reproduction number, Failed vaccination model, Basic reproduction number, Mathematical Epidemiology.

RESUMEN

El número básico de reproducción, en la modelización de enfermedades infecciosas es un valor fundamental para diseñar
estrategias de control. Calcular el valor de R0 puede ser difícil en algunas situaciones debido a la complejidad del modelo.
Esta complejidad a menudo obstaculiza el cálculo explícito de R0 y dificulta la comprensión de cómo diferentes poblaciones
y parámetros influyen en su valor. Trabajos recientes han propuesto el número de reproducción objetivo como alternativa al
R0 (Shuai et al., 2013).
El número de reproducción objetivo muestra cómo, a través del análisis de algunos de los subsistemas que describen el
comportamiento de una enfermedad infecciosa, es posible ejercer control sobre todo el sistema. El número de reproducción
objetivo puede proporcionar un marco para la toma de decisiones en salud pública. En este trabajo lo aplicamos a dos
modelos: un modelo con vacunación incompleta y un modelo para la leptospirosis.
Los modelos presentados exhiben dos características fundamentales del número de reproducción objetivo. En primer lugar,
la simplicidad de su expresión en comparación con el número de reproducción básico. En segundo lugar, su comportamiento
análogo al R0 en 1.

Palabras Claves:

Número de reproducción objetivo, Modelo de vacunación imperfecta, Número de reproducción básico, Epidemiología
Matemática.
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1 INTRODUCTION

O n infectious disease modeling, the basic reproduction
number (R0) is crucial. It indicates the average

number of secondary infections generated by an infectious
individual in a fully susceptible population during its
infectious period. Calculating R0 is essential because it
provides vital information for assessing the likelihood of
an epidemic outbreak and understanding how diseases will
spread. Moreover, it aids in the development of effective
strategies to control and prevent infectious diseases (van
Den Driessche and Watmough, 2002). In mathematical
models involving multiple infectious compartments, com-
puting the basic reproduction number R0 can be challenging
(Saldaña and Barradas, 2018), as it involves intricate
parameter relationships resulting in complex expressions.
Even if an explicit expression for R0 is derived, identifying
which parameters impact its reduction most significantly is
not always straightforward. The expression’s complexity
often hampers direct analysis. The challenge of calculating
and modifying R0 has direct implications when designing
strategies for controlling and preventing infectious diseases.
Without a clear understanding of the factors that influence
R0 and how to intervene in them, devising effective measures
to contain disease spread becomes more difficult.

The aforementioned challenges highlight the necessity
on calculating a value that is easy to determine and enables
the design of control strategies in a clear manner. In this
way, the work presented by (Heesterbeek, 2007) introduces
the concept of target reproduction number. This approach
provides a significantly simpler expression in comparison to
the originally proposed basic reproduction number.

This perspective concentrates on implementing specific
strategies within a subsystem of the disease propagation
model, provided that the remaining subsystems are under
control. The objective is to exert control over the disease
spread.

The target reproduction number estimates the level of
effort required to eliminate an infectious disease when
control is applied to a specific subpopulation (Driessche,
2017).
An illustrative example could arise in the context of a
disease where diverse infection groups coexist, such as in
the case of leptospirosis, where infectious groups encompass
both animals and bacteria, with humans as the susceptible
classes. Assuming that certain transmission routes have been
controlled due to prior measures, for instance, transmission
between humans and bacteria through interventions like
water treatment, the focus might shift to controlling other
transmission routes, specifically infections between animals
and bacteria. The target reproduction number offers a tool
to regulate the subsystem related to the intended control
pathways. Consequently, it becomes feasible to achieve
control over the entire system, provided the other subsys-

tems associated with the remaining transmission routes have
already been managed.

A fundamental property of the target reproduction number
resides in its value being 1 when the basic reproduction
number is also equal to 1. This characteristic implies that
control strategies implemented to attain a value of 1 in
the target reproduction number will also place R0 at 1.
Depending on the model’s characteristics, for example, if the
model does not exhibit a backward bifurcation at R0 = 1, this
could lead to disease elimination through control strategies
as mentioned.
The target reproduction number is not unique, as it depends
on the population to which the control strategy is applied.
This implies that the value of the target reproduction number
can vary based on the considered population.

In practice, it is recognized that different control strategies
can lead to disease eradication. Therefore, it is necessary
to evaluate which strategy requires lower implementation
costs.
To illustrate the calculation of the target reproduction
number, in this work two examples are presented. The
first model, proposed in (Gandon et al., 2003), addresses a
scenario of failed vaccination where the infectious disease
can persist despite vaccination. This model is known as the
incomplete vaccination model.
On the other hand, the second model is about leptospirosis,
presented in (Baca et al., 2015). In this work an analysis is
conducted on a model representing leptospirosis, a disease
in which humans become infected through direct or indirect
contact with the urine of infected animals, wounds, or other
bodily fluids. In this work, numerical simulations will be
presented to illustrate the obtained results. These simula-
tions will illustrate how, by implementing control strategies
constructed based on the target reproduction number, the
infected curves tend towards zero as time increases. This
implies the eradication of the disease.

In this article, the emphasis lies on the significance of
the target reproduction number as an alternative to the basic
reproduction number, facilitating more detailed analyses
and employing simpler expressions. We refer to prior in-
vestigations conducted by (Roberts and Heesterbeek, 2003)
and (Driessche, 2017). This paper is structured as follows.
In Section 2 it is elaborated on the concept of the target
reproduction number, detailing the steps and calculations
required for its construction. In Section 3 it is shown two
specific examples in which target reproduction number is
employed to underscore its utility in concrete situations.
Additionally, this section includes simulations to verify the
effectiveness of the target reproduction number as a control
strategy. In the last section, the discussion is presented,
highlighting the main results obtained in the analyses, along
with the effectiveness of implementing the strategy based on
target reproduction number.
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2 CONSTRUCTION OF THE TARGET REPRO-
DUCTION NUMBER

In this section, the construction of the target reproduction
number will be performed using the methodology proposed
by (Roberts and Heesterbeek, 2003) and (Lewis et al., 2019).

In this analysis, the study addresses an infectious disease
that spreads among susceptible individuals using a system
of differential equations. Specifically, the existence of n
infectious compartments is considered. To understand and
analyze the disease spreading dynamics, we will start by
using the next-generation matrix, referred to as K = [ki j].
This matrix, as described in the study by (van Den Driessche
and Watmough, 2002), characterizes the interactions and
connections among the distinct infectious compartments,
playing a fundamental role in determining the target repro-
duction number.

Each element ki j in the matrix K represents the expected
number of secondary infections in the compartment i that
can be caused by an infected individual in the compartment
j, considering a fully susceptible population during their
infectious period. These matrix components reflect the
potential for disease the propagation among the different
compartments.

To explain the methodology, we will begin with the first
infectious compartment. That is in a fully susceptible pop-
ulation, the introduction of an infected individual belonging
to compartment 1 will be considered. Subsequently, the
matrix K will be used to calculate the expected number
of individuals in all infectious compartments in the next
generation of infection, due to an infectious individual from
the first compartment.

Considering the canonical vector e1 = (1,0, . . . ,0) of the
standard basis in Rn, we will compute Ke1. The i-th com-
ponent of this vector represents the expected number of new
infections in compartment i produced by an in individual
from compartment 1. Specifically, the first component of this
vector represents the expected number of new cases in the
infectious compartment 1 in the next generation of infection,
caused by an infectious individual from compartment 1.

To identify all new infections in compartment 1, it is nec-
essary to consider infections generated by individuals from
other compartments. To achieve this, the first position of the
vector (Ke1) is removed. This is accomplished through the
expression (I−P)(Ke1), where P = [pi j] is the projection
matrix defined by:{

pi j = 1 if i = j = 1,
pi j = 0 otherwise.

Subsequently, the matrix K is applied again to the resulting
vector (I − P)(Ke1), allowing us to obtain the expected

number of infected individuals from classes 2 to n that are
generated by an infectious individual from class 1 during the
second generation of infection.

In the third generation of infection, the vector
K (I−P)(Ke1) is calculated. The expected number of
infected individuals of type 1 is obtained using the expres-
sion PK (I−P)(Ke1).
On the other hand, the term (I−P)(K (I−P)(Ke1)) repre-
sents the expected number of infected individuals of types
2 to n. This term takes into account infections that occur
in intermediate generations of the infection without the
involvement of infectious individuals of type 1.
After j + 1 generations of infection, the value
eT

1 K ((I−P)K) j−1 e1 represents the expected number
of infected individuals of type 1 that arise during the
infection cycle without the intervention of an infectious in-
dividual from the same group in an intermediate generation.
Therefore, the value representing the number of secondarily
infected individuals of type 1 originating from an infected
individual of type 1 is:

Γ1 = eT
1 K

∞

∑
j=0

((I−P)K) j . (1)

The spectral radius of the matrix (I − P)K is denoted as
ρ (I−P)K. If ρ((I−P)K) < 1, then the sum, given in (1),
converges to:

Γ1 = eT
1 K (I− (I−P)K)−1 e1. (2)

In the realm of numerous infectious diseases, different
groups of infected individuals are often encountered. Previ-
ously, the focus was solely on counting the expected number
of infected individuals from the first group. However, it is
now possible to generalize this concept by considering the
existence of l classes of infected individuals, where l can be
less than or equal to n. The following definition is provided:

Definition 1 The target reproduction number Γl is defined
as the spectral radius of the l× l matrix Ml , given by:

Ml = ET
l K (I− (I−Pl)K)−1 El . (3)

With El and Pl are matrices of size n× l and n× n respec-
tively, defined as:{

(Pl)ii = (El)ii = 1 if i = 1, ...l,
(Pl)i j = (El)i j = 0 otherwise.

From this point onward, we will employ the matrices:
D = PlK and B = (I−Pl)K, which were used in the equation
given in (3). Note that D+B = K.

A related method regarding the matrices D and B, as pro-
posed by (Driessche, 2017), is presented in the next. Suppose
that a control strategy is to be applied and the parameters de-
scribing the infection behavior in the next-generation matrix

doi: https://doi.org/10.58560/rmmsb.v03.n02.023.09
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K are modified. Let S be the set of entries in K that will be
modified by the control strategy τ . Additionally, let l be the
classes of infectives from which Γl was constructed. In this
context, the matrix Pl = [pi j] is:{

pii = 1 if i = 1, ...l,
pi j = 0 otherwise.

The matrix D = [di j] will be referred to as the target ma-
trix. It contains the entries that will be modified in the ma-
trix K through the control strategy τ . On the other hand,
B = [bi j] = (I−Pl)K contains the entries of K that will not
be modified. To ensure an effective control strategy over the
terms of the matrix K that will not be modified, it is required
that the spectral radius of the matrix B = (I−Pl)K, denoted
as ρ(B) = ρ((I−Pl)K), be less than 1, as established in (1).
This ensures that the non-modified terms do not significantly
contribute to the disease’s spread. The target reproductive
number can be defined based on the aforementioned matri-
ces B and D as follows (Driessche, 2017):

Γl = ρ
(
D(I−B)−1) . (4)

With ρ
(
D(I−B)−1

)
being the spectral radius of the matrix

D(I − B)−1, and I being the identity matrix of size n× n.
Associated with the target reproduction number, the control
matrix is constructed as defined below.

Definition 2 (Control Matrix) The control matrix associ-
ated with the target matrix D is defined as KC(τ) = B+ D

τ
.

τ represents a control applied to the matrix D, which in turn
represents the implementation of a control policy within the
population.

According to the above definition, the components di j of
the matrix D are transformed to di j

τ
. The following theorem

describes some characteristics of the target reproduction
number as a threshold parameter, as well as its effectiveness
as a control policy. The complete proofs of these theorems
can be found in (Driessche, 2017).

In this section, we make use of the definition of a non-
negative matrix, where all its entries are greater than or equal
to zero. Additionally, we consider an irreducible matrix,
characterized by the property that all its elements can be re-
lated to one another, either directly or indirectly, through a
finite number of steps. This implies that there are no iso-
lated submatrices where there is no connection between rows
and columns. The main characteristic of the target reproduc-
tion number is manifested through the following theorem,
which explicitly establishes the relationship between the con-
trol strategy τ applied to the population and the reproduction
objective number. Γl , defined in equation (4).

Theorem 1 Let K, B, D be non-negative n×n matrices with
K = B + D is irreducible, D 6= 0, and ρ(B) < 1. Then,
ρ(KC(τ)) = 1 if and only if τ = Γl .

The following theorem demonstrates that the target repro-
duction numbers associated with different control strategies
share similar characteristics, as they are threshold parame-
ters at 1. Additionally, they offer the advantage of having
much simpler expressions compared to the basic reproduc-
tion number, R0.

Theorem 2 Let K, B, and D be non-negative irreducible ma-
trices with K = B+D, D 6= 0, and ρ(B) < 1. Then, the fol-
lowing propositions hold:

i) ρ(K)< 1 if and only if ΓD < 1.

ii) ρ(K) = 1 if and only if ΓD = 1.

iii) ρ(K)> 1 if and only if ΓD > 1.

This theorem establishes a relationship between the target re-
productive numbers and their behavior around the threshold
value of 1.

Theorem 3 Let K, B, B′, D, and D′ be non-negative ma-
trices, with K = B+D = B′+D′, and all of them are irre-
ducible. D 6= 0, D′ 6= 0, ρ(B)< 1, and ρ(B′)< 1. If D′ < D,
then one and only one of the following propositions holds:

i) 1 < ΓD < ΓD′ .

ii) 1 = ΓD = ΓD′ .

iii) ΓD′ < ΓD < 1.

3 THE TARGET REPRODUCTIVE NUMBERS

In this section, we will apply the methodology proposed
in (Shuai et al., 2013) to calculate the target reproductive
numbers for different epidemiological models in order to
demonstrate the advantages of this technique.

Example 1. In this example, we examine the model pro-
posed in (Gandon et al., 2003). The model describes the dy-
namics of an infectious disease when a vaccination strategy
is being implemented in the susceptible population. In this
model, it is assumed that the vaccine is imperfect. The model
is presented below:

S′ = Λ(1− p)−µS− (βuuI +βvvIv)S,

S′v =−pΛ−µSv− (βuvI +βvuIv)Sv,

I′ = (βuuI +βvvIv)S− (µ +ν)I,

I′v = (βuvI +βvuIv)Sv− (µ +νv)Iv.

(5)

In the design of control strategies, it is useful to have a
tool that allows me to determine whether an epidemic out-
break will occur. In the introduction of this paper, it is men-
tioned that the basic reproductive number is the commonly
used epidemiological threshold parameter to determine in-
fectious dynamics at the onset of the disease.

doi: https://doi.org/10.58560/rmmsb.v03.n02.023.09
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The next-generation matrix for model (5) is shown below.

K =


βuuS∗0
µ +ν

βuvS∗0
µ +νv

βvuS∗0v
µ +ν

βvvS∗0v
µ +νv

 , (6)

When calculating the spectral radius of matrix K with
E0 = (S0,S0v,0,0) =

(
Λ(1−p)

µ
, pΛ

µ
,0,0

)
, the basic reproduc-

tive number associated with the model given in (5) is:

R0 =
1
2

(
βuuS∗o
(v+µ)

+
βvvS∗ov
(vv +µ)

+√(
βuuS∗o
(v+µ)

+
βvvS∗ov
(vv +µ)

)2
−4
(

βuuS∗0βvvS∗ov−βuvβvuS∗ovS∗ou

(v+µ)(vv +µ)

) .

(7)

Consequently, the disease-free equilibrium E0 is locally
asymptotically stable if and only if R0 < 1. Therefore, a
control strategy involves adjusting one or more parameters
of the model in such a way that the value of R0 decreases
below 1.
Note that the effects on R0 when applying a control strategy
to reduce the transmission rate among the non-vaccinated
population βuu are not clear. The same ambiguity applies
to the other effective contact rates βvv, βvu, and βuv. Let us
consider a control strategy aimed at decreasing the spread of
infections among the non-vaccinated individuals, assuming
that transmissions among vaccinated individuals are under
control.

This strategy can be implemented by reducing mobility
among the non-vaccinated individuals. Next, we proceed to
calculate the value of target reproductive number associated
with this strategy, as per the definition established in equa-
tion (4). However, before performing this calculation, it is
necessary to obtain the matrix D(I−B)−1.

The expression that defines D(I−B)−1 is as follows:


βuuS∗o
(v+µ) (1−

βvvS∗ov
(vv+µ) )

1− βvvS∗ov
(vv+µ) −

βuvS∗o
(vv+µ)

βvuS∗ov
(v+µ)

βuuS∗o
(v+µ)

βvvS∗ov
(vv+µ)

1− βvvS∗ov
(vv+µ) −

βuvS∗o
(vv+µ)

βvuS∗ov
(v+µ)

0 0

 .
(8)

Let the set of indices S = {(i, j) | 0 ≤ i, j ≤ n} correspond
to the entries of the matrix K given in (6). According to the
definition established in (4), the target reproduction number
Γl for (5), associated with the index set S = {(1,1)}, is given
by the following expression:

Γl =

βuuS∗o
(v+µ) (1−

βvvS∗ov
(vv+µ) )

1− βvvS∗ov
(vv+µ) −

βuvS∗o
(vv+µ)

βvuS∗ov
(v+µ)

. (9)

It is essential to highlight the simplicity of the target
reproduction number as defined in equation (9), compared
to the basic reproduction number established in equation
(7). Although the expression for the target reproduction
number is much simpler, its value equals is 1 when the basic
reproduction number R0 is also equal to 1. However, another
important aspect is to consider its effectiveness in guiding
the control of disease spread. This happens once a specific
control strategy that modifies transmission rates has been
implemented.

To demonstrate the effectiveness of the target reproduc-
tion number, numerical simulations will be conducted. The
expression given in (1) asserts that by applying a control
strategy to the parameters related to disease transmission in
the entries of the next-generation matrix K and adjusting
these parameters through the control strategy to make τ

equal to the target reproduction number, the new basic
reproduction number associated with the control matrix
KC(τ) will be equal to 1.This condition, in turn, ensures that
the solution curves of system (5) approach to zero as time
approaches to infinity, provided initial conditions are near
the equilibrium point. Additionally, it is essential that system
(5) has no endemic points in order to develop the strategy
associated with the target reproduction number, the follow-
ing set of parameters is considered: θ = (βuu,βvv,βuv,βvu)
that are related to the target reproduction number Γl defined
in equation (9). The implementation of the control strategy
involves dividing certain parameters associated with the
next-generation matrix of the model by the value of the
target reproduction number. In practice, this represents
the minimum value to which infections must be reduced
to ensure the epidemic’s extinction (Saldaña and Barradas,
2018).

Contemplating controlling transmission within the unvac-
cinated population, entailing an adjustment to the parameter
βuu. Contemplating controlling transmission within the
unvaccinated population, entailing an adjustment to the
parameter βuu will be made. This modification is defined by
the new value β uu, which is calculated as βuu∗ = βuu

Γl
. The

following graphs show the temporal evolution of the curves
of infected individuals before and after the implementation
of the control strategy through parameter modification.
These graphs illustrate the curves of infected individuals
both before and after the parameter modification.

Figure (1) shows the impact on the spread of the epidemic
in the unvaccinated population. It can be observed that as
control is implemented, the curve showing the evolution of
the infected population tends to zero as time approaches to
infinity. This result is explained by the expression given
in (1), which states that the control measure is effective if
the transmission rate is reduced in accordance with the val-
ues specified by the target reproduction number (Saldaña and
Barradas, 2018). According to the theorem presented in (3),

doi: https://doi.org/10.58560/rmmsb.v03.n02.023.09
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Figure 1: The graph depicts the prevalence of the infection in the
non-vaccinated population over time, represented by a continuous
curve in the absence of control and a dashed curve in the presence

of control.
The parameter values used are: βuu = 0.0002, βvv = 0.00009,
βuv = 0.000009, βvu = 0.000003, v = 0.0001, vv = 0.00011,

p = 1
5 , µ = 1

365×20 , Λ = 3×µ

.

when considering a different index set for the matrix K, the
associated target reproductive number for that index set ex-
hibits the same behavior around 1 as any other reproductive
number associated with a different strategy.
In this context, let us consider the index set S = {(2,2)}.
This index set is related to a new control strategy linked to
the vaccinated population. Imagine a scenario where the epi-
demic spread in the non-vaccinated population is already un-
der control, possibly due to the isolation of this population.
However, the vaccinated population is allowed to circulate
freely. Despite this situation, there still exists a possibility
of transmission within this vaccinated group. Now, let us
proceed to calculate the target reproductive number ΓD′ for
infections generated by a vaccinated individual in the vacci-
nated susceptible population. We follow a similar process as
shown the previous steps for the model given in (5) with the
values provided in (7), and with the matrix D = [di j] with:{

di j = ki j if i = j = 2,
di j = 0 otherwise.

If ρ(B)< 1, the objective reproductive number ΓD′ exists and
is given by:

ΓD′ =

βvvS∗ov
(vvµ) (1−

βuuS∗o
(v+µ) )

1− βuuS∗o
(v+µ) −

βuvS∗o
(vv+µ)

βvuS∗ov
(v+µ)

. (10)

The target reproductive number ΓD′ represents the average
number of vaccinated individuals infected by another
vaccinated individual in a population that is completely
susceptible to the disease. The infection can spread from one
vaccinated individual to another or through unvaccinated
individuals.

In this context, the goal is to put in place a control strategy
to reduce the spread of the epidemic among the vaccinated

Figure 2: The graph depicts the prevalence of the disease infection
in the vaccinated and unvaccinated populations over time,

represented by continuous curves in the absence of control and
dashed curves in the presence of control. The parameter values

used are: βuu = 0.00000002, βvv = 0.9, βuv = 0.000009,
βvu = 0.000003, v = 0.001, vv = 0.0001, p = 1

5 , µ = 1
36520 ,

Λ = 3µ

.

population, assuming that the epidemic is already under
control among the unvaccinated population. To achieve this,
a set of parameters θ = (βuu,βvv,βuv,βvu) related to the
target reproductive number ΓD′ defined in (4) is taken into
consideration.

Firstly, a study was conducted on the effect of vac-
cination on the disease spread. For this purpose, the
dynamics of the epidemic in the absence of control mea-
sures on the population were analyzed, and the parameters
θ = (βuu,βvv,βuv,βvu) corresponding to the initial situation
were obtained. Subsequently, a numerical simulation of the
epidemiological model was performed using the parameters
θ , in order to obtain the prevalence curves of the disease
both in the vaccinated and unvaccinated populations.

Once these curves were obtained, the control strat-
egy was implemented by adjusting the parameters
θ0 = (βuu,β

∗
vv,βuv,βvu), where β ∗vv = βvv

ΓD′
, with the aim

of reducing the reproductive number of the disease. In
practice, this could be achieved by implementing specific
control measures, such as reducing the mobility of the
vaccinated population, among other strategies.

Figures 1 and 2 show how, by applying control strategies
based on target reproductive numbers, the curves represent-
ing the behavior of the infected individuals experience a
significant decrease. This implies that, in the context of the
model, the disease tends to disappear.

Example 2. The following example, presented in (Baca
et al., 2015), deals with human infection caused by bacte-
ria from the environment or contact with infected animals.
The mathematical model describes how an epidemic spreads,
with contact with infected animals and environmental bacte-
ria being the main sources of new infections in both animals
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and humans. Below is the detailed model:

S′A =−(C1IA +C2B)SA +βNA−α2SA,

I′A = (C1IA +C2B)SA−α2IA,

S′H =−(C3IA +C4B)SH +α1IH ,

I′H = (C3IA +C4B)SH −α1IH ,

B′ =C5IA +C6IH − kB.

(11)

By setting the direction field given in (11) equal to zero,
an infection-free equilibrium is obtained with the following
components:

X0 = (SA0,SH0, IA0, IH0,B) =
(

Nβ

α2
,NH ,0,0,0

)
. (12)

The next-generation matrix K associated with the model de-
scribed in (11) is displayed.

K =


C1NA

β
0

C2NA

K
C3NH

β
0

C4NH

K
C5

β

C6

α1
0

 . (13)

The characteristic polynomial of (13) is defined as follows:

P(λ ) =−λ
3 +R1λ

2 +
(
R2

4 +R2
6
)

λ +R3−R1R2
4. (14)

The equation (18) define the values of R1, R4, R6, and R in
terms of the parameters C1, C2, C4, and C5. NA and NH rep-
resent the total populations of animals and humans, respec-
tively.

R1 = c1NAβ . (15)

R4 =

√
C4C6NH

α1k
. (16)

R6 =

√
C2C5NA

βk
. (17)

R̄ = 3

√
C2C3C6NANH

α1βk
. (18)

The basic reproduction number R0 associated with model
(11) is defined as follows:

R0 =
1
3

R1 + z
1
3 +
|z| 23

z
1
3
. (19)

With

z =
R̄3

2
+

R3
1

3
+

R1R2
6

6
− R1R2

4
3

+√
R̄6

4
+

R1R2
6R̄3

6
+

R3
1R̄3

27
+

2R2
1R2

4
27

−
R4

1R2
4

27

−
5R2

1R2
4R2

6
27

−
R2

1R4
6

108
− R2

1R2
4R̄3

3
−
(

R2
4 +R2

6
27

)3

.

(20)

In the current scenario, we consider a situation where the
control of transmission between humans and animals, as well
as between humans and bacteria, is already controlled, pos-
sibly through control campaigns. Now, the focus is on main-
taining control both between animals and between animals
and bacteria, possibly through hygienic measures involving
animal food consumption. With this consideration, we will
proceed to calculate the value of the reproduction number
associated with this control strategy. It is important to high-
light that identifying which parameters are most sensitive be-
comes significantly more challenging when examining the
entire system, due to the complexity of the expressions in-
volved, as shown in the equation given in (20). However, by
focusing the analysis on the subsystem related to a specific
strategy, this task simplifies, especially if the other subsys-
tems are already under control. Using the previous definition
given in (4), the matrix B is defined as:

B =


0 0 0

C3NH

β
0

C4NH

k
C5

β

C6

α1
0

.

According to the definition given in equation (4), the target
reproduction number Γl , for (11), associated with the index
set S = {(1,1), (1,2)}, is given by the following expression:

ρ(D(I−B)−1) =
(C1k+C2C5)NAα1 +(C2C3−C1C4)C6)NANH

(kα1−C4C6NH)β
.

(21)
It is important to highlight the simplicity of the target re-
production number in comparison to R0 given by (20). This
expression remains valid whenever the condition ρ(B)< 1 is
satisfied, which is equivalent to:√

C4C6NH

kα1
< 1.

Next, numerical simulations will be permormed. These
simulations will be carried out before applying the control
strategy and after applying the control strategy using the
target reproduction number. Given the target reproduction
number Γl , as defined in equation (21), the set of parameters
θ = (C1,C2,C3,C4,C5,C6) is taken into consideration. The
strategy involves controlling the transmission rates between
animals and bacteria, which leads to the modification of
the parameters C1 and C2. New parameters are derived
from the value of target reproduction number using the
following expressions for C1 and C2, denoted as C∗1 =

C1
Γl

and

C∗2 = C2
Γl

. In Figure presented show the temporal evolution
of the infected individuals, including the curves of infected
individuals before and after of the parameter modification.

Figure 3 illustrates how the application of combined
control strategies, based on target reproduction number,
manages to reduce infections in both animals and humans.
The curves representing the behavior of infected individu-
als tend to zero, indicating that the disease tends to disappear.
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Figure 3: The graph displays the prevalence of infection by the
disease in the population over time, represented by continuous

curves in the absence of control and dashed curves in the presence
of control. The simulation uses the following parameter values:

β = 1
3560 , C1 = 5×10−3, C2 = 5×10−3, C3 = 65×10−2,

C4 = 6×10−2, C5 = 2×10−2, C6 = 2.15×10−6, α1 =
1

20 ,
α2 =

1
500 , and k = 1

18 .

It is noteworthy how it is possible to exert control over the
entire system by regulating the subsystem related to trans-
mission between animals and bacteria. This objective is valid
as long as the subsystems associated with transmission path-
ways involving humans are under control. Clearly, this sub-
system has a considerably simpler mathematical formulation
for analysis compared to the complexity of the entire system.
The simplicity in its formulation represents greater efficiency
when designing control strategies.

4 DISCUSSION

Calculating the basic reproduction number in situations
involving complex interactions among multiple infectious
compartments poses significant challenges. The diverse
interactions among these compartments, represented by
different rates, complicate the derivation of simple formulas
for computing R0. This, in turn, hinders the identification of
strategies for controlling the spread of an infectious disease.

In response to this complexity, the concept of the target
reproduction number is suggested as a simpler alternative
to the original R0. This strategy focuses on analyzing
subsystems related to transmission pathways within an
infectious disease system. It shows that by controlling these
subsystems, overall system control can be achieved. The
target reproduction number facilitates the formulation of
more specific control strategies.
By directing efforts towards a subgroup of the population,
the target reproduction number provides a tool to control the
outbreak of an infectious disease. The target reproduction
number offers a clearer understanding of how changes
in one part of the system can influence disease spread,
thereby enabling more informed decision-making in the
implementation of preventive measures.

It is important to highlight that the target reproduction
number is supported by results that ensure a similar behavior

to R0 when its value is equal to 1. These results underscore
a fundamental aspect: regardless of the strategy used to
calculate the target reproduction number, when one of them
reaches a value of 1, the others also become 1. Therefore,
this property enables the evaluation of various control
strategies and their effectiveness. The choice of which
strategy to apply should be based on minimizing costs when
implementing a control strategy.

To illustrate the applicability of the target reproduction
number, two specific models have been used. In the first
model, the scenario of incomplete vaccination is addressed,
where the infectious disease can persist despite vaccination.
In this model, two types of strategies are modeled: the
first strategy is linked to controlling the non-vaccinated
population. The effectiveness of this control strategy
depends on controlling the other subsystem represented by
the vaccinated population. Conversely, a control strategy
is developed associated with the vaccinated population,
assuming control over the non-vaccinated population. The
effectiveness of both strategies occurs because changes in
the rate values, which are adjusted by the target reproduction
number, allow it to reach the threshold of 1. This implies that
the respective basic reproduction number for the adjusted
system is equal to 1.

Through a detailed calculation of the target reproduc-
tion number and the performance of simulations, the
effectiveness of this approach as a control strategy in the
proposed scenario has been shown. The choice of the most
suitable strategy is based on the costs required to control
the regulated subsystem. In the second model, an analysis
of leptospirosis, a disease with infectious agents including
animals and bacteria in the environment, is carried out.
A control strategy is proposed that addresses infections
between animals and bacteria, assuming transmission to
humans is under control. The target reproduction number
related to this control strategy is significantly simpler than
R0. The target reproduction number presents itself as an
alternative for developing control strategies to contain
an epidemic outbreak. It is important to emphasize that
by solely controlling the subsystem related to infections
between animals and bacteria, it is possible to exert control
over the entire system that includes all transmission path-
ways.

The simulations carried out in the examples have sup-
ported the effectiveness of the target reproduction number as
a control strategy. In each of the examples, it is illustrated
how the curves of infected individuals undergo changes
before and after applying the strategy based on the target
reproduction number. It is clear that after implementing
this strategy, the curve decreases significantly. This contrast
highlights the utility of this approach as a control strategy.

A consequence that can be inferred from applying the
target reproduction number to the model of incomplete
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vaccination is that when implementing different control
strategies based on the target reproduction number, first
in the unvaccinated population and then in the vaccinated
population, these strategies efficiently achieve disease
eradication as time approaches infinity.
An observation that can be made from the analysis of
second model is that, despite the simplicity of the target
reproduction number, using it as a control strategy on a
subpopulation also leads to disease elimination as time tends
to infinity.

In conclusion, the target reproduction number provides
a valuable alternative to the traditional calculation of R0 in
situations involving complex interactions among multiple
infectious classes. Its simplicity make this approach a
promising tool for addressing the spread of infectious
diseases and designing more effective interventions. By
focusing on a specific population group, the target repro-
duction number allows for a more precise assessment of
intervention effectiveness and facilitates informed decision-
making regarding prevention and control strategies.

A pathway for future research could involve determining
the target reproduction number in models of multiple cities,
thus enabling a comparison between the target reproduction
number approach for the entire multi-city model and the pro-
posed numbers for each individual city.
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