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ABSTRACT

The impact of human actions on the environment poses several challenges at the global level, with solutions that deserve
the productive and political sectors and civil society to be jointly involved. Resource scarcity, ecosystem degradation, and
climate change must be addressed urgently; this is a paradigm change in the forms of production and consumption. This is a
transition from a linear economy to a circular economy, which allows responsible disposal and reuse of waste along the links
of production and use. However, despite notable advances in recycling and upcycling, landfill and dump disposal remain the
primary waste disposal worldwide. Furthermore, a significant amount of waste is disposed of illegally, affecting the quality
of life of communities that live in nearby areas. This work studies the trade-off between waste container removal and illegal
micro-dumps cleaning using impulsive control. A type of strategic mathematical model is formulated, one that captures the
minimal but relevant aspects of the phenomenon, to describe the dynamics of garbage.

Keywords:

Circular economy, Waste containers, Illegal dump, Impulsive control, Security factor.

RESUMEN

El impacto de las acciones humanas sobre el medio ambiente plantea varios desafíos a nivel global con soluciones que
merecen la participación conjunta de los sectores productivos, políticos y de la sociedad civil. La escasez de recursos,
la degradación de los ecosistemas y el cambio climático deben ser abordados con urgencia, siendo necesario un cambio
de paradigma en las formas de producción y consumo. Sin embargo, a pesar de los notables avances en el reciclaje y
el suprareciclaje, los rellenso sanitarios y vertederos siguen siendo la principal forma de eliminación de residuos en todo
el mundo. Es más, una cantidad importante de residuos se elimina de manera ilegal afectando la calidad de vida de las
comunidades que viven en zonas cercanas. Este trabajo estudia la compensación entre el retiro de contenedores de residuos y
la limpieza de micro-vertederos ilegales mediante el control impulsivo. Se formula un modelo matemático de tipo estratégico,
aquel que capta aspectos mínimos pero relevantes del fenómeno, para describir la dinámica de la basura.

Palabras Claves:

Economía circular, Contenedores de residuos, Vertederos ilegales, Control impulsivo, Factor de seguridad.
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1 INTRODUCCIÓN

W aste is generated by human action and as a subprod-
uct of satisfying consumer and production needs.

This fact is structured by the linear economy, a model that
is defined from the chain: take, make, use, and destroy
(Ghisellini et al., 2016). Indeed, the quantity of municipal
solid waste (MSW) is increasing worldwide as human
societies move toward an urban future. Recent estimates
suggested that 1.3 billion tonnes of MSW are generated
each year; however, this quantity is projected to increase
to around 2.2 billion in 2025 (Hoornweg and Bhada-Tata,
2012). As in most countries, in Chile waste is disposed
of in legal and illegal dumps, corresponding to 69.4%
and 30.6%, respectively (Ministerio de Medio Ambiente,
2022). Although these final disposal places are far from
the central area of the city, they represent a sociosanitary
problem for the populations living in adjacent areas, such
as rural and urban communities. Indeed, residents living
close to waste disposal places are typically affected by
contamination of water and ground, jointly with bad smells,
visual displeasure, and the potential propagation of diseases
and plagues (Cárdenas et al., 2016; Ossio and Faúndez,
2021; Escobar, 2021). Eradicating this vulnerability is the
long-term seventh goal of Chile’s transition to the circular
economy 2040, termed “Recovery of sites affected by illegal
waste disposal” (Ministerio de Medio Ambiente, 2021), for
this reason, it is important to understand the dynamics of
waste disposal and removal to detect critical control points
and optimize the local resources for its management.

To achieve this important paradigm change, a challenge
of the utmost urgency at the global level, it is necessary
to work together with the productive and political sectors
and civil society (Govindan and Hasanagic, 2018; Ossio
et al., 2020; Ministerio de Medio Ambiente, 2021) to avoid
the several negative effects that waste disposal generates
on the environmental, social and economic dimensions.
In this regard, four axes have been outlined to achieve
the desired transformation: Circular Innovation, Circular
Culture, Circular Regulation, and Circular Territories in
relation to each dimension and their interrelation through the
government and/or municipal council directions (Ministerio
de Medio Ambiente, 2021).

Since it is a transversal problem, illegal disposal of waste
aggravates environmental, social, and economic impacts.
For example, Vergara and Tchobanoglous (2012) showed
that, relative to the areas surrounding dumping sites, stream
ecology, flora and fauna, habitat depletion, and land use
change dominated the concerns of the stakeholders. This
contingency is not unfamiliar among Chilean communi-
ties; indeed, according to Ossio and Faúndez (2021), in
Chile, there are 3.735 illegal sites of final waste disposal
formed by 3.492 dumps and 243 micro-dumps, distributed
throughout the country; however, these are concentrated
in the Región Metropolitana which generates the largest

amount of waste (Ministerio de Medio Ambiente, 2022;
Vivanco Font, 2023). Several strategies have been proposed
to recover sites affected by illegal waste disposal, such as
zero waste industries, educating the civil society to promote
recycling/upcycling behaviors, and strengthening control to
avoid illegal waste disposal (Ministerio de Medio Ambiente,
2021).

In this work, a strategic mathematical model (Jiliberto,
2020) is formulated to describe the dynamics of waste that is
deposited both in legal waste containers and littering in clan-
destine or illegal micro-dumps. Assuming that waste con-
tainer removal and illegal micro-dump cleaning are carried
out simultaneously and regularly, a trade-off occurs. In addi-
tion, depending on the rate at which wastes are littered, the
waste containers can collapse, and thus the waste in the ille-
gal micro-dumps increases and maintains. This situation is
modeled from the level of filling waste containers, a fraction
between availability and occupied capacity.

2 MATHEMATICAL MODELING

Let be G = G(t) the total waste at time t ≥ 0. Assuming
that the waste is deposited by individuals on the municipal
council waste containers or sites such as hillsides and rural
roads on the periphery of the city giving rise to micro-dumps,
their amounts are represented respectively by G⊕ = G⊕(t)
and G	 = G	(t). Then, G = G⊕ + G	. In addition, the
total capacity of municipal council waste containers is given
by the density of these, represented as N = N(t), and their
specific capacity c. Therefore, when G⊕ = cN is obtained,
the municipal council waste containers are filled. However,
since this notion can be subjective, the occupancy fraction
γ ∈ (0,1) equivalent to G⊕/cN is proposed. Consequently,
when the municipal council waste containers have avail-
ability, being fulfilled G⊕ < γcN, then these are occupied
at a rate proportional to available capacity: r(1−G⊕/cN).
Conversely, when G⊕ ≥ γcN is obtained, the inflow waste
that cannot be deposited due to lack of space is dumped,
in addition to rate r	, in peripheral sites, and then, forms
the illegal micro-dumps. In turn, considering a population
increase or constant container theft at a rate µ , the density of
municipal waste containers decreases. This waste dynamics’
occurs each τ > 0 unit of time, in concordance with the
municipal council waste container removal by the cleaning
and maintenance department. At these moments, a fraction
λ = 1− e−µτ of stolen waste containers are replenished,
jointly with the cleaning of illegal micro-dumps and the
container waste removal in a trade-off fractions δ ∈ (0,1)
and 1− δ , respectively. In fact, municipal council waste
containers are removed and their capacity is restored to cN
when δ = 1. However, the illegal micro-dumps were not
cleaned. Conversely, when δ = 0, the illegal micro-dumps
were cleaned but the waste containers were not removed,
which promotes the emergence of illegal micro-dumps. Con-
sequently, a trade-off is obtained between these clean spaces.
Therefore, the following mathematical model is proposed:
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

N′(t) = −µN(t)

G′⊕(t) = r⊕

(
1− G⊕(t)

cN(t)

)

G′	(t) =

 r	 , if G⊕(t)< γcN(t)

r	+ r⊕
G⊕(t)
cN(t)

, if G⊕(t)≥ γcN(t)


t 6= kτ

N(t+) = N(t)+(1− e−µτ)(N∗−N(t))

G⊕(t+) = (1−δ )G⊕(t)

G	(t+) = δG	(t)

 t = kτ

(1)

with N(0) = N∗, G	(0) > 0, and G⊕(0) > 0. Importantly,
if µ = 0 then N(t) = N∗ for any t ≥ 0.

3 RESULTS

The mathematical study of the model (1), described by a sys-
tem of impulsive differential equations, investigates the long-
term patterns of waste dynamics and focuses on the relation-
ship between the instant at which the waste containers are
filled and when they are removed, and jointly when the illegal
micro-dumps are cleaned. The synchrony between activities
plays a key role in the illegal micro-dumps’ non-persistence.

THRESHOLD CONDITION AND TEMPORAL DYNAMICS

Let be {tk} an increasing and non-bounded sequence such
that tk+1 = tk+τ , which is related to the removal of the waste
containers and cleaning the illegal micro-dumps. Then, solv-
ing the model (1) for t ∈ (tk, tk+1], follows that

N(t) = N(t+k )e−µ(t−tk).

Taking t = tk+1, the stroboscopic map

N(tk+1) = [N(tk)+(1− e−µτ)(N∗−N(tk))]e−µτ

is obtained, whose equilibrium point is given by

N =
λ

eµτ −1+λ
N∗,

where λ = 1− e−µτ . Consequently,

G′⊕(t)+
r⊕

cN(t+k )e−µ(t−tk)
G⊕(t) = r⊕,

has by solution

G⊕(t)= exp

{
− r⊕(eµ(t−tk)−1)

cN(t+k )µ

}(
G⊕(t+k )+

∫ t

tk
r⊕E(s)ds

)
,

where

E(s) = exp

{
r⊕(eµ(s−tk)−1)

cN(t+k )µ

}
for any t ∈ (tk, tk+1]. Taking t = tk+1, we have the strobo-
scopic map

G⊕(tk+1) = (1−δ )exp
{
− r⊕(eµτ −1)

cN(t+k )µ

}
G⊕(tk)+

+exp
{
− r⊕(eµτ −1)

cN(t+k )µ

}∫ tk+1

tk
r⊕ exp

{
r⊕(eµ(s−tk)−1)

cN(t+k )µ

}
ds︸ ︷︷ ︸

I

,

whose equilibrium point is given by

G⊕ =

r⊕ exp
{
− r⊕(1− e−µτ)

cNµ

}
1− (1−δ )exp

{
− r⊕(1− e−µτ)

cNµ

} ·L ,

where L exist due to 0 < I ≤ r⊕τ .
Taking eµ(t−tk) > µ(t−tk)+1 for any t ∈ (tk, tk+1], follows

that

E(t)> exp
{

r⊕(t− tk)
cN(t+k )

}
,

and then

L ≥ lim
k→∞

cN(t+k )

r⊕

(
exp
{

r⊕τ

cN(t+k )

}
−1
)
,

=
cNeµτ

r⊕

(
exp
{

r⊕τ

cNeµτ

}
−1
)

(2)

is obtained. Figure 1 illustrates the temporal dynamics of
model (1) for N(t) and G⊕(t) states and the respective stro-
boscopic maps according to impulsive dynamics.

Figure 2 shows that dG⊕/dµ < 0, and thus G⊕ tends to

G⊕∗ =
cN∗

(
1− exp

{
− r⊕τ

cN∗

})
1− (1−δ )exp

{
− r⊕τ

cN∗

} (3)
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(a) (b)

Figure 1: Temporal dynamics of model (1). (a) The waste containers density, N = N(t), and (b) the amount of waste in containers,
G⊕ = G⊕(t) for t ∈ [0,150] and initial conditions N(0) = 30, G⊕(0) = 20. The common parameter values are τ = 30, µ = 0.04, c = 2,

δ = 0.17, γ = 0.95, r	 = 0.01, r⊕ = 1, and N∗ = 30. Importantly, the dashed line represents the top-fill level, G⊕ := γcN∗ = 19.

Figure 2: Equilibrium values of the stroboscopic maps
G⊕(tk+1) = F(G⊕(tk),N(tk)) (red dots) and

G⊕(t+k+1) = δG⊕(tk+1) (blue dots) as µ increases, using τ = 30,
c = 2, δ = 0.17, γ = 0.95, r	 = 0.01, r⊕ = 1, and N∗ = 30 as

parameter values, and initial conditions N(0) = 30, G⊕(0) = 20.

as µ tends to zero, and thus necessarily, L tends to
cN∗(exp{r⊕τ/(cN∗)}−1)/r⊕ according to (2).

On the other hand, let be {sk} a sequence such that
G⊕(sk) = γcN∗, which is related to the waste containers are
filled. Therefore, integrating the model (1) on (sk,sk+1] we

have

G⊕(sk+1) = cN∗+[cN∗−G⊕(s+k )]exp
{
− r⊕(sk+1− sk)

cN∗

}
.

Assuming that G⊕(s+k ) = 0, this is, the waste containers are
removals, follows that

γcN∗ = cN∗

(
1− exp

{
− r⊕(sk+1− sk)

cN∗

})
and thus,

sk+1 = sk +
cN∗
r⊕

ln
(

1
1− γ

)
︸ ︷︷ ︸

T

,

which is an increasing and non-bounded sequence. This
scenario is the particular case of the model (1) when δ = 0
is proposed.

Therefore, the mathematical model (1) provides a theoret-
ical framework that captures minimal but relevant aspects of
the waste dynamics associated with the cleaning of illegal
micro-dumps and removal of waste containers based on
impulsive control. Specifically, we can derive the following
conclusion.

Proposition 1 Let be µ = 0 and

R =
δ

(1− γ)

[
δ + exp

{
r⊕τ

cN∗

}
−1
] .

doi: 10.58560/rmmsb.v03.n02.023.11

https://doi.org/10.58560/rmmsb.v03.n02.023.11


REVISTA DE MODELAMIENTO MATEMÁTICO DE SISTEMAS BIOLÓGICOS, Vol.3( 2023), No2, e23R10 6 of 13

Therefore,

G⊕(t) = cN∗− [cN∗− (1−δ )G⊕(tk)]exp
{
− r⊕(t− tk)

cN∗

}
satisfies the model (1) for any t ∈ (tk, tk+1], where

G⊕(tk+1) = (1−δ )exp
{
− r⊕τ

cN∗

}
G⊕(tk)+

cN∗

(
1− exp

{
− r⊕τ

cN∗

})
and k ≥ 0, so that G⊕(t) ∈ [(1− δ )G⊕∗,G⊕∗] as t tends to
infinity. In addition, if R ≥ 1 then

G	(t) ∈ [r	τδ/(1−δ ),r	τ/(1−δ )]

as t tends to infinity. Conversely, when 0 < R < 1 follows
that

G	(t) ∈ [δG	∗,G	∗],

where G	∗ is given by (8) when (1− δ )G⊕(tk) < cN∗, and
by (9) when (1−δ )G⊕(tk)≥ cN∗ are obtained from k ≥ k∗.

Proof
Let be {tk} and {sk} two sequences given by that tk+1 =

tk + τ and sk+1 = sk +Tk such that G⊕(sk) = γcN∗. Integrat-
ing on (tk, tk+1] follows that

G⊕(t) = cN∗− [cN∗−G⊕(t+k )]exp
{
− r⊕(t− tk)

cN∗

}
, (4)

which solve the model (1). Thus, taking t = tk+1 we have the
stroboscopic map

G⊕(tk+1) = (1−δ )exp
{
− r⊕τ

cN∗

}
G⊕(tk)+

cN∗

(
1− exp

{
− r⊕τ

cN∗

})
. (5)

Analogously, for s ∈ (sk,sk+1],

G⊕(sk+1) = cN∗− [cN∗−G⊕(s+k )]exp
{
− r⊕Tk

cN∗

}
,

is obtained, and equivalent to

γcN∗ = cN∗− [cN∗−G⊕(s+k )]exp
{
− r⊕Tk

cN∗

}
,

or

G⊕(sk+1) = cN∗− [cN∗− γcN∗]exp
{
− r⊕Tk

cN∗

}
depending on the initial condition value. Therefore,

G⊕(s+k ) = cN∗

(
1− (1− γ)exp

{
r⊕Tk

cN∗

})

with 0 < Tk ≤ T , and

G⊕(sk+1) = cN∗

(
1− (1− γ)exp

{
− r⊕Tk

cN∗

})
with Tk ≥ T , are obtained.

Considering the equilibrium point of sequence {G⊕(tk)}k,
given by the expression (3), it is necessary to study the para-
metric conditions that allow it to occur that G⊕∗ > G⊕(s+k )
so that the waste containers to be removals before these are
full, and G⊕∗ > G⊕(sk+1) in the collapse case.

Firstly, G⊕∗ > G⊕(s+k ) is equivalent to

cN∗

(
1− exp

{
− r⊕τ

cN∗

})
1− (1−δ )exp

{
− r⊕τ

cN∗

} >N∗

(
1− (1− γ)exp

{
r⊕Tk

cN∗

})
,

if and only if,

exp
{

r⊕Tk

cN∗

}
>

δ

(1− γ)

[
δ + exp

{
r⊕τ

cN∗

}
−1
] = R.

Solving for Tk, a value exists whether R > 1. Therefore,
G′	(t) = r	 for any t 6= tk and G	(t+k ) = δG	(tk), so that
G	(t) = δG	(tk)+ r	(t− tk) for any t ∈ (tk, tk+1], where the
sequence {G⊕(tk)}k is increasing and satisfies G	(tk+1) =
δG	(tk)+ r	τ . Consequently, the solution of this difference
equation is given by

G	(tk) = δ
kG	(t0)+ r	τ · 1−δ k

1−δ
(6)

with tends to r	/(1−δ ) as k increases.
Secondly, from G⊕∗ > G⊕(sk+1) and by procedures anal-

ogous to the first case, exp{−r⊕Tk/cN∗} > R is obtained.
Solving for Tk, a value exists whether 0 < R < 1. Using the
expression (4) at t = sk follows that

γcN∗ = cN∗− [cN∗− (1−δ )G⊕(tk)]exp
{
− r⊕(sk− tk)

cN∗

}
,

if and only if,

sk = tk +
cN∗
r⊕

ln
(

cN∗− (1−δ )G⊕(tk)
cN∗(1− γ)

)
(7)

when (1−δ )G⊕(tk)< cN∗ from k ≥ k∗. Importantly,

Tk = sk+1− sk,

= τ +
cN∗
r⊕

ln
(

cN∗− (1−δ )G⊕(tk+1)

cN∗− (1−δ )G⊕(tk)

)
tends to τ as k increases. Therefore,

G	(t) =


δG	(tk)+ r	(t− tk) , If t ∈ (tk,sk]

G̃	(t) , If t ∈ [sk, tk+1]

doi: 10.58560/rmmsb.v03.n02.023.11
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where

G̃	(t) = G	(sk)+(r	+ r⊕)(t− sk)−

− [cN∗− (1−δ )G⊕(tk)]
(

exp
{
− r⊕(sk− tk)

cN∗

}
−

− exp
{
− r⊕(t− tk)

cN∗

})
.

is obtained. Taking t = sk and t = tk+1, we have

G	(sk) = r	(sk− tk)+δG	(tk),

and

G	(tk+1) = G	(sk)+(r	+ r⊕)(τ− (sk− tk))

− [cN∗− (1−δ )G⊕(tk)]
(

exp
{
− r⊕(sk− tk)

cN∗

}
−

− exp
{
− r⊕τ

cN∗

})
.

Therefore, substituting the first equation into the second
equation, and considering the difference sk− tk, given by (7),
we have

G	(tk+1) = δG	(tk)+(r⊕+ r	)τ−

cN∗ ln
(

cN∗− (1−δ )G⊕(tk)
cN∗(1− γ)

)
− cN∗(1− γ)+

+[cN∗− (1−δ )G⊕(tk)]exp
{
− r⊕τ

cN∗

}
,

whose equilibrium point is given by

G	∗ =
(r⊕+ r	)τ− cN∗ ln

(
cN∗− (1−δ )G⊕∗

cN∗(1− γ)

)
− cN∗(1− γ)+ +[cN∗− (1−δ )G⊕∗]exp

{
− r⊕τ

cN∗

}
1−δ

. (8)

On the other hand, if (1−δ )G⊕(tk)≥ cN∗ from k≥ k∗ then,
integrating on (tk, tk+1] we have

G	(t) = G	(tk)+(r	+ r⊕)(t− tk)+

+[(1−δ )G⊕(tk)− cN∗]exp
{
− r⊕(t− tk)

cN∗

}
,

and taking t = tk+1, follows that

G	(tk+1) = δG	(tk)+(r	+ r⊕)τ+

+[(1−δ )G⊕(tk)− cN∗]exp
{
− r⊕τ

cN∗

}
,

whose equilibrium point is given by

G	∗ =
(r⊕+ r	)τ +[(1−δ )G⊕∗− cN∗]exp

{
− r⊕τ

cN∗

}
1−δ

.

(9)
Therefore, G	(tk) tends to G	∗ given by (8) or (9) as k in-
creases, according on the fulfillment of (1−δ )G⊕(tk)< cN∗
or (1−δ )G⊕(tk)≥ cN∗ from k ≥ k∗.

Finally, if R = 1 then

γ = 1− δ

δ + exp
{

r⊕τ

cN∗

}
−1

= 1−
δ exp

{
− r⊕τ

cN∗

}
1− (1−δ )exp

{
− r⊕τ

cN∗

} ,

if and only if,

γcN∗ =
cN∗

(
1− exp

{
− r⊕τ

cN∗

})
1− (1−δ )exp

{
− r⊕τ

cN∗

} = G⊕∗.

Thus, G⊕(sk) = G⊕∗ and sk = tk from k ≥ k̃. Therefore,

G	(t) = δG	(tk)+ r	(t− tk)

for t ∈ (tk, tk+1]. Using the (6) relationship, it follows the
result. �

Regarding the threshold value, denoted by R, using the
concept of elasticity (Martcheva, 2015), which is defined by
ε

p
R := (∂R/∂ p) · (p/R)≈%∆R/%∆p where p is some pa-

rameter of interest, follows that

ε
γ

R =
γ

1− γ
, ε

δ

R = 1− δ

δ + eκ −1
, ε

κ
R =− κeκ

δ + eκ −1
,

where κ = r⊕τ/{cN∗} is the maximal occupancy ratio. Thus,
ε

γ

R > 0, εδ

R > 0 and εκ
R < 0. Therefore, as the subjective

occupancy fraction and the removal fraction increase or the
maximal occupancy ratio decreases, the available capacity
of waste containers is promoted (see Figure 3). However,
increasing the removal fraction increases the waste amount
range in micro-dump in the long term (see Proposition 1).

NUMERICAL SIMULATIONS

To validate our mathematical result, Figure 4 illustrates
the Proposition 1 conclusions’ based on the varying γ

parameter value, and thus, in the filling level γcN∗. Con-
sequently, R and γcN∗ values decrease as γ decreases too,
and the inequality fulfillment (1− δ )G⊕(t) < cN∗ transit
to (1− δ )G⊕(t) ≥ cN∗, which can also be promoted as δ

increases to one. However, this variation increases signifi-
cantly the waste amount range in the illegal micro-dumps
according to the trade-off between removal and cleaning.
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Figure 3: Combinations of δ ∈ (0,1), γ ∈ (0,1), and κ ∈ (0,6) so
that R > 1, where κ = r⊕τ/{cN∗}. Importantly, the

complementary region that represents 0 < R < 1 is significantly
greater than R ≥ 1 region.

On the other hand, Figure 5 shows how the temporal dy-
namics of the model (1) vary as the container stealing rate µ

increases, taking as reference the dynamics associated with
µ = 0 and a parameter set so that R ≥ 1 is obtained (see
Fig.5(a)). Here, it is observed the transition among the dif-
ferent scenarios given by Proposition 1, where the capacity
of containers in the long term allows a constant waste inflow
or not, because these are full, implying waste increases in il-
legal micro-dumps. Importantly, it is the effect steal of waste
containers on garbage dynamics, significantly reducing the
containers’ top-fill level and promoting their collapse, and
thus the illegal micro-dump maintenance.

4 DISCUSSION AND CONCLUSIONS

Our goal was to study the trade-off dynamics between the
removal of waste containers and the cleaning of illegal
micro-dumps. This dynamics was represented using a
mathematical model described by an impulsive differential
system at both fixed and variable times (Cordova-Lepe et al.,
2015). The findings establish two scenarios in the long
term, the containers are full or not, and whose differentiation
depends on a threshold that is a function of all model
parameters. In particular, when the waste container density
does not vary (taking µ = 0), an explicit representation
is obtained for this threshold value, denoted by R. Thus,
when 0 < R < 1 the containers are full in the long term.
Conversely, when R ≥ 1 the containers have a capacity
for waste disposal. Therefore, it is natural to associate R

as a safety factor that relates the capacity and demand by
a quotient. From the safety factor is possible to monitor
and guard the integrity of a specific process, particularly of
engineering (Hansson, 2009).

Based on elasticity analysis of static quantities
(Martcheva, 2015), this safety factor increases as the
removal (δ ) and/or the subjective occupancy (γ) fractions
increase too, or by decreasing the maximal occupancy
ratio (κ = r⊕τ/{cN∗}). As the trade-off result, whose
consequence implies that illegal micro-dumps persist, our
findings establish that the efforts must be aimed at γ increase
or κ decrease. Firstly, we established that γ represents the
subjective occupancy fraction, a measure that pretends to
consider human behavior faced in the disposition of legal
waste disposal, where the location and access to waste
containers are keys in the promotion and maintenance
of habits with a socio-environmental co-responsibility
(Valenzuela-Levi and Flores-Castillo, 2023). Secondly,
the decrease of κ , by the reduction of r⊕ or the increase
of N∗, is associated with promoting strategies of recycling
and upcycling (Ministerio de Medio Ambiente, 2021; Yang
et al., 2023; Valenzuela-Levi, 2019).

The illegal disposal of solid waste in urban areas has
been found to affect the structure and function of natural
ecosystems (Vergara and Tchobanoglous, 2012). As a
result, it is crucial to study and simulate waste management
practices in cities to create sustainable strategies that can
reduce the environmental and health hazards linked with
improper waste disposal. In this regard, comprehending
the elements contributing to the development of small-scale
waste disposal locations and the measures implemented by
local government agencies is vital for making informed
choices that reduce the occurrence of new dumping sites
(Shmelev and Powell, 2006).

Hence, developing models that represent disposal be-
haviors in these settings is important for devising efficient
measures to address the growing issue of municipal solid
waste. A future improvement that could be made in this
regard might be the incorporation of a spatially explicit an-
alytic framework to the problem of predicting where would
be the most probable location of a new micro-dumping area,
based on both, the distribution of the collecting containers
and the “environmental” characteristics of frequent micro-
dumping points.

There are germ or nuclear mathematical models; that is,
although they do not fit in detail with each of the observable
expressions, that is, the variations of particular phenomena,
they come to contain the minimum elements and relation-
ships to characterize the essence of the class in that such phe-
nomena are inserted. This is the case with the logistic model
in population dynamics or the SIR (susceptible-infectious-
removed) propagation model in epidemiology. These mod-
els, called strategic (Jiliberto, 2020), act as platforms since
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they have the property that, when assembled or added speci-
ficity, they reach a resolution that can be contrasted with
a specific reality, and, in general, they become ad hoc in-
struments, that is, with greater descriptive and projection
possibilities. In our opinion, the model (1) aspires to be
strategic, since considering the complexity that waste dis-
posal processes have in situ, its minimalist conceptual struc-
ture achieves connections whose mathematical analysis in-
terpreted at sight makes practical sense.
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(a)

(b)

(c)

Figure 4: Temporal dynamics of model (1) according to Proposition 1. The common parameter values are τ = 30, µ = 0, c = 2.0,
δ = 0.1, r	 = 0.1, r⊕ = 1.0, and N∗ = 30. Particularly, (a) γ = 0.95 with R ≈ 1.6434 so that G	 ∈ [0.33,3.33], (b) γ = 0.85 with
R ≈ 0.5478 so that G	 ∈ [2.68,26.81], and (c) γ = 0.75 with R ≈ 0.3287 so that G	 ∈ [3.25,32.58]. Importantly, the dashed line

represents the top-fill level, G⊕ = γcN∗.
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(a)

(b)

(c)

(d)

Figure 5: Temporal dynamics of model (1) as parameter value µ increases. The common parameter values are τ = 30, c = 2.0, δ = 0.2,
r	 = 0.01, r⊕ = 1.0, γ = 0.95, and N∗ = 20 so that R = 3.0372. In (a) µ = 0, (b) µ = 0.001, (c) µ = 0.01, and (d) µ = 0.1. Importantly,

the dashed line represents the top-fill level, G⊕ = γcN.
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