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ABSTRACT

This communication summarises a “round-table discus-
sion” at a workshop held at the Federal University of Santa 
Maria, Brazil, on trends and perspectives in mathematical 
biology. Mathematical biology as a research field has seen 
many changes over the past few decades. Starting mostly 
from deterministic differential or difference equations, the 
mathematical techniques applied to biology have diversified 
to include stochastic processes, graph theory, topology, 
combinatorics and many other areas of mathematics. The 
complexity, heterogeneity and diversity of biological systems 
represent both challenges and opportunities in modelling. 
On the one hand, they require and nurture methodological 
innovations. On the other hand, they allow models to explain 
biological phenomena as emerging from multiple scales and 
to elucidate biological mechanisms, thoughts and concepts 
with the clarity of mathematics. All this makes mathemati-
cal biology an exciting and fruitful field. The present paper 
discusses (1) key biological topics to be addressed in mathe-
matical modelling, (2) some of the mathematical techniques 
currently in use and the need for further methodological 
development, and (3) some issues in the training of the next 
generation of mathematical biologists.

RESUMEN

Esta comunicación resume una “mesa redonda” en un works-
hop celebrado en la Universidad Federal de Santa Maria, Brasil, 
sobre tendencias y perspectivas en biología matemática. La 
biología matemática como campo de investigación ha experi-
mentado muchos cambios en las últimas décadas. Partiendo 
principalmente de ecuaciones diferenciales o en diferencias 
deterministas, las técnicas matemáticas aplicadas a la biología 
se han diversificado para incluir procesos estocásticos, teoría 
de grafos, topología, combinatoria y muchas otras áreas de las 
matemáticas. La complejidad, heterogeneidad y diversidad 
de los sistemas biológicos representan tanto desafíos como 
oportunidades en la modelización. Por un lado, requieren 
y fomentan innovaciones metodológicas. Por otro lado, 
permiten que los modelos expliquen fenómenos biológicos 
que emergen de múltiples escalas y dilucidan mecanismos, 
pensamientos y conceptos biológicos con la claridad de las 
matemáticas. Todo esto hace de la biología matemática un 
campo apasionante y fructífero. El presente artículo discute 
(1) temas biológicos clave que se abordarán en la modeliza-
ción matemática, (2) algunas de las técnicas matemáticas 
actualmente en uso y la necesidad de un mayor desarrollo 
metodológico, y (3) algunas cuestiones en la capacitación de 
la próxima generación de biomatemáticos.

Introduction

The field of mathematical biology (here we will use the
term “biology” in a very broad sense, incorporating
medicine, ecology, epidemiology, etc.) has grown consi-
derably over the past years from a research area practised 
by a few visionary pioneers to a well-established sub-field 
of mathematics that is now taught in most universities 
worldwide. The type of research done has also changed 
beyond all recognition (see, e.g., Levin et al., 1997; Co-
hen, 2004; May, 2004; Reed, 2004, 2015; Maini, 2023).

Mathematical modelling is very high on the radar now due 
to the COVID-19 pandemic. Epidemic modellers around the 
world have worked and continue to work on state-of-the-art 
models to predict the course of the pandemic, assess impact 
scenarios and compare exit strategies. At the beginning of the
pandemic, knowledge about SARS-CoV-2 was virtually 
non-existent, which posed major challenges to modellers, 
public health officials, politicians and other decision-makers 
alike. With mathematical models and simulations playing a 
prominent role in the response to the pandemic, concepts 
like exponential growth, R values and herd immunity entered 
the discussions of the broader public, some modellers also 
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played an important role influencing public opinion. Thus, 
the field of mathematical modelling is acknowledged by 
society probably more than ever. 

At the same time, biodiversity and ecosystems are in peril due 
to global change, which is occurring at unprecedented rates 
(e.g., Pereira et al., 2010). To make predictions in a changing 
world, process-based models are required. For mathematical 
biology these times are, therefore, as important as challenging, 
and this is further amplified by the availability of increasingly 
voluminous, varied and quickly processed data, by expanding 
computer power and by advents in computational algorithms.

This perspective, inspired by a “round-table” discussion 
at the workshop Mathematical Biology in Springtime at 
29S53W,1 aims to highlight three key aspects of the subject 
of mathematical biology going forward. First, we will put 
forward what we think are some key scientific topics to be
addressed using mathematical modelling. Second, we will 
discuss some of the mathematical methods that are being 
used now and the extensions required. Third, we will focus 
on the type of training needed for young people coming into 
mathematical biology, as well as ways to keep expanding 
this field, which, although it has grown significantly, is still 
comparatively small when compared with other areas of 
science (cf. Reed, 2015).

TOPICS

As we indicated in the Introduction, the recent research 
activities in epidemiological modelling due to the COVID-19 
pandemic are probably unparalleled in history. Yet, the pan-
demic proved challenging in many regards. For example, the 
epidemic curves looked rather different from what simple, 
off-the-shelf epidemic models predict. Many variables, 
including age structure, differences in susceptibility or 
heterogeneity in the exposure to the virus (often related to 
socio-economic factors) and individual behaviour regarding 
the adoption of protective measures impact the course of the 
pandemic. Modellers must take into account limited access 
to information, difficulties in model validation, uncertainties 
in measurements and fundamental model limitations, not 
only as good scientific practices, but also as important caveats 
when conveying model predictions and possible scenarios 
to the media and general public.2

The explosion in the interest in the field of epidemiological 
modelling also led to the integration of many researchers from 
adjacent fields keen to bring in their expertise. Dangerfield 
et al. (2023) describe how UK institutions coordinated many 

research activities including Virtual Study Groups,3 Scientific 
Advisory Boards to government4 and Rapid Review Groups,5 
which provided rapid assessments of the emerging research 
and assisted government advisory groups.6 A wide range of 
similar initiatives or modelling “hubs” emerged in many other 
countries as well (e.g. Reich et al., 2022).

More generally, consortia of research groups organised 
around a certain scientific problem can convey a multitude 
of benefits such as coordinating research activities, collec-
ting and curating data, and leveraging research networks or 
software products. Such organised research networks allow 
rapid development of models in large numbers, which frees 
researchers from having to rely on a single model; a risky 
bet. With multiple models at hand, it is possible to compare 
outcomes under various scenarios from different standpoints, 
which helps to identify inconsistencies and convergences 
between models. This helps to either promote debate between 
research groups or build consensus and deliver collective as-
sessments. Such model intercomparison projects have a long 
tradition in climatology (Cess et al., 1989) and are featured 
prominently in IPCC (Intergovernmental Panel on Climate 
Change) assessment reports (Coupled Model Intercomparison 
Project). Similar initiatives are underway for biodiversity re-
search (Inter-Sectoral Impact Model Intercomparison Project) 
in the context of IPBES (Intergovernmental Science-Policy 
Platform on Biodiversity and Ecosystem Services).

Epidemic modelling is very likely to remain a topical issue, 
given the number of emerging infectious diseases in recent 
years (e.g., West Nile virus in 1999, SARS-CoV in 2003, H1N1 
in 2009, MERS-CoV in 2012, Ebola in 2013, Zika in 2016) and 
increased cross-species transmissions due to global change.

The field of ecology is at the forefront of studying the conse-
quences of the ongoing rapid global environmental change. 
According to IPBES (2019), the main direct drivers of biodi-
versity loss are land and sea use change, direct exploitation 
of organisms, climate change, pollution and invasive non-
native species. They pose major damage, threats and risks 
to ecosystem functioning and services as well as production 
of vital goods (Millennium Ecosystem Assessment, 2005). 
There is increasing recognition of the existence of ecological 
regime shifts, in which ecosystems abruptly and irreversibly 
move from one state to another under supercritical forcing 
(Scheffer et al., 2001). The planetary boundary framework 
attempts to globally aggregate the anthropogenic impact on 
nine processes and relate them to sustainable environmen-
tal limits (Steffen et al., 2015). These processes are climate 
change, biogeochemical (nitrogen and phosphorus) flows, 
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land-system change, freshwater use, aerosol loading, ozone 
depletion, ocean acidification, loss of biosphere integrity, 
including functional and genetic biodiversity, and introduc-
tion of novel entities, such as toxic chemicals and plastics.
With the increasing societal and political recognition of 
global change, ecological models are increasingly aiming at 
‘anticipatory’ rather than ‘explanatory’ predictions (Mouquet 
et al., 2015; Houlahan et al., 2017; Maris et al., 2018). On 
the basis of theoretical and empirical advances, ecological 
models progressively incorporate biological mechanisms 
rather than relying solely on statistical descriptions (e.g. 
Urban et al., 2016; Pilowsky et al., 2022). Yet, there is still no 
consensus emerging regarding the drivers of species richness 
and ecosystem functioning (Loreau, 2010). When addressing 
questions about environmental change, models need the 
ability to project into novel, future conditions (Evans, 2012). 
This requires not only a solid mechanistic understanding 
(Mouquet et al., 2015), but also underlines the importance 
of model transferability, i.e., how well models generalise to 
new contexts (Houlahan et al., 2017; Yates et al., 2018).

In developmental biology, advances in image analysis and 
data collection are revealing the complexities underlying 
cell movement and spatial patterning. These, in turn, provide 
challenges to experimentalists and modellers alike, who aim to 
develop a mechanistic understanding of how processes acting 
across a vast range of spatial and temporal scales combine 
to produce the cell and tissue level behaviour that we see. 
Understanding developmental biology is not only of intrinsic 
scientific interest, it can also help us develop therapies for 
developmental diseases. For example, in early development, 
neural crest cells delaminate from the neural tube and migrate 
long distances before they differentiate into key tissues in the 
body. If this process does not occur properly, it can lead to 
developmental deformities (the so-called neurocristophies, 
66 of which have been identified) (Vega-Lopez et al., 2018). 
A full understanding of this collective migratory behaviour 
would allow us to understand the mechanisms and therefore 
suggest ways to combat developmental diseases. Moreover,
these cells have many mechanisms in common with those 
of cancer cells, so an understanding of how these cells are 
controlled in normal development suggest novel therapies 
(e.g., Gallik et al., 2017).

The abstract nature of mathematics allows for ideas from 
one area of science to be translated to other areas. A striking 
example of this is the employment of mathematical mode-
lling ideas developed in the context of ecology in cancer cell 
dynamics. Animal competition models, for example, the clas-
sical Lotka–Volterra model (originally proposed for chemical 

reactions) are now being used in adaptive therapy. Here, the 
competitors are drug-sensitive and drug-resistant cells. The 
idea is that, rather than using a drug at the standard of care 
(maximum tolerated dose) that will kill off all the drug-sen-
sitive cells, allowing the resistant cells to grow unbounded, 
using the drug more sparsely by having “drug-holidays”, 
maintaining the tumour at a controlled size, will allow the 
sensitive cells to compete with the resistant cells. In this 
setting, mathematical modelling is being used to test out 
different therapeutic strategies (see, for example, Strobl et 
al., 2021), and this is a place where ideas from reinforce deep 
learning can be employed to modify treatment in an ongoing 
way. Indeed, more generally, mathematical modelling is now 
being used to inform drug design and extrapolation from 
the laboratory to the clinic (see, for example, the review by 
Kondic et al., 2022).

To build models capable of simulating therapeutic 
interventions in human patients, different interconnected 
processes have to be taken into account. Infectious diseases 
and cancer are good examples of how processes in different 
systems and on different scales (for example, intracellular 
reactions, intercellular communication, cell migration, and 
potentially the metabolism in organs far from the tissue site) 
depend on each other and determine the outcome of the 
disease. Different approaches may be used to model each 
temporal and spatial scale, as well as different parts of the 
human body. Although model interfacing is becoming less 
challenging (e.g., Zhou, 2014), we lack a standard framework 
to couple, merge and switch models. A rigorous procedure 
for multiscale modelling would leverage the development 
of powerful simulations able to accurately test and calibrate 
therapeutic interventions in human patients.

Advances in computing power have led to “digital twin” 
technologies, where in many industries now computer si-
mulations are used to predict how equipment will perform. 
A key question is, can this technology be used to develop 
human digital twins? This is an area of research that is now 
being pursued in many different areas of medicine (see, for 
example, Laubenbacher et al., 2022).

As data collecting technologies advance, we are now on the 
cusp of being able to fit models to data to acquire parameter 
values. This is now pushing the statistical frontiers of parame-
ter estimation and identifiability (see, for example, Browning 
et al., 2020). Moreover, ideas from persistent homology are 
now being used to characterise spatial data (see, for example, 
McGuirl et al., 2020; Skaf and Laubenbacher, 2022).



Opinion article Current trends and perspectives in mathematical biology                                     
https://doi.org/10.58560/rmmsb.v03.n02.023.10

18

MATHEMATICAL METHODS

Classical approaches in mathematical biology focus on low-di-
mensional and deterministic systems, ignoring the comple-
xities of stochasticity and nonlinear dynamics. Traditional 
mathematical tools involve ordinary and partial differential 
equations as well as difference equations. Mathematical bio-
logy today goes beyond linear theory and standard nonlinear 
systems to highly complicated nonlinear systems. There are 
advances in coarse graining, relating fully nonlinear systems, 
and in approaches involving agent-based models, network 
and graph theory, boolean analysis, topological data analysis, 
statistics, probability theory and stochastic and branching 
processes, to mention a few. Mathematical biology is now 
both an inter- and intradisciplinary field.

Artificial intelligence (AI) and machine learning (ML) approa-
ches are being increasingly used. It is worth noting that AI 
is based on biology (e.g., neural networks), so it is per se an 
example where biology and mathematics meet. ML models 
require large amounts of data; they base their predictions 
on going through databases of inputs and outputs of a gi-
ven problem. Their results can be faster and more accurate 
compared to classical statistical methods. More challenging, 
however, is to gain understanding of the causal mechanisms. 
ML and mechanistic modelling are therefore often seen as 
different paradigms, but they can complement each other 
in their methodological strengths and weaknesses (Baker et 
al., 2018). The coupling of ML and mechanistic models into 
hybrid approaches provide major opportunities (Reichstein 
et al., 2019). Examples include improved model paramete-
risations or the emulation of computationally challenging 
process-based models by ML algorithms. Also, mechanistic 
“sub-models” with little theoretical support can be replaced 
by data-driven ML models; for example, in agent-based 
systems the decision-making of individual agents based 
on input from the environment can follow ML models (e.g., 
Zhang et al., 2021).

A digital twin is, as already indicated, a dynamic digital re-
presentation of a real-life system (e.g., cells, tissues, organs 
or even the natural environment) (Madni et al., 2019). With 
automatic data flow between the digital and biological object, 
this allows a real-time monitoring and prediction of systems,
with applications especially in medicine and biotechnology. 
This is another example where multi-scale aspects are impor-
tant. Relevant spatial scales can range from the molecular to 
the ecosystem level. Temporal scales can range from protein 
processes to the billions of years of evolution of life on Earth. 
At each level, collective dynamics emerge from the behaviour 

of individual units. Despite considerable advances in mul-
ti-scale mathematical biology, our understanding of these 
phenomena is still far from complete (e.g., Eftimie, 2022).

The dynamical systems traditionally studied in mathemati-
cal biology are usually autonomous and smooth. However, 
non-smooth dynamical systems become prevalent in the 
presence of management actions or policy instruments. For 
instance, pest control programs are triggered beyond certain 
economic injury levels, harvest moratoria come into place 
when the harvested population size drops below a critical 
level or the use of pesticides, fertilisers or irrigation may 
be forbidden if environmental indicators become flagged. 
Non-smooth dynamical systems can be considerably more 
complex in their dynamics than smooth ones. Consider, for 
example, the transition from regular dynamics to chaos when 
varying a system parameter in a certain direction. In smooth 
systems, this transition generally occurs in a sequence of 
bifurcations, often called a route to chaos (e.g. Anishchenko 
et al., 2014). In non-smooth systems, by contrast, this tran-
sition can take place in a single bifurcation (di Bernardo et 
al., 2008; Avrutin et al., 2019). Such bifurcations can give rise 
to dynamical structures entirely different from the ones in 
smooth systems. 

Non autonomous systems occur when there is periodic 
forcing (e.g., parameters influenced by seasons or circadian 
rhythms) or a change in environmental conditions such as 
temperature or precipitation. The latter is often modelled 
in the form of parameters that evolve or are ramped in a 
linear or accelerating trend. Just like seasonal forcing can 
induce complex dynamics, simple trends in parameters due 
to a changing world can cause rate-induced critical transi-
tions or track system states that are unstable in a constant 
environment (e.g., Siteur et al., 2016; Vanselow et al., 2019; 
Arumugam et al., 2021).

When studying the human impact on biological systems, 
the human influence is often encapsulated in the form 
of a simple parameter (e.g., a harvest rate or the average 
vaccination coverage in a population). Conversely, in many 
socio-economic studies dealing with biological systems, the 
latter are often simplified to almost static objects (see also 
Shin et al., 2022). For a full account of the mutual feedbacks 
between the biological and socio-economic domains, howe-
ver, one has to take into account the coupled dynamics. This 
requires connecting biological dynamics with human and 
social sciences, for which sociology, economics, behavioural 
psychology, law and other areas come into play. Mathematical 
methods that can be used in this context include, for example, 
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evolutionary and differential games, agent-based models and 
optimal control. Of course, they also deal with different time 
scales (e.g., slow-fast systems, singular perturbation analysis) 
and spatial variation (e.g., reaction-diffusion or integrodi-
fferential equations, nonlocal effects), to mention some of 
the complexities involved. Such coupled social-ecological 
systems are fascinating in their own right (e.g., Levin et al., 
2013; Galvani et al., 2016). They also play an increasing role in 
behavioural epidemiology. Individual decision-making, social 
learning and the spread of (mis-)information are key factors 
in the adoption of preventive measures such as vaccination, 
social distancing and face masks. Consequently, the spread 
of infection and the success of public health programmes are 
affected by individual behaviour (see the reviews by Funk et 
al., 2010; Chang et al., 2020).

EDUCATION AND TRAINING

Mathematical biology will have a bright future with new gene-
rations of scientists that have expertise in both mathematics 
and biology, i.e., “empiricists with stronger quantitative skills” 
and “theoreticians with an appreciation for the empirical 
structure of biological processes” (Hastings and Palmer, 2003). 
Universities, however, are built on disciplines. Yet, many of 
the most exciting areas in science are interdisciplinary. How 
do we overcome the barriers between disciplines and, indeed, 
within disciplines (intra-disciplinary)? One way to achieve 
this in graduate education are Centres for Doctoral Training. 
These are externally funded PhD programmes at universi-
ties in the UK and they have been designed to strategically 
increase a university’s capacity in interdisciplinary research, 
especially at the interfaces between traditionally organised 
departments. Similarly, Research Training Groups funded by 
the German Research Foundation promote innovative and 
often interdisciplinary PhD programmes at German univer-
sities. These and other externally funded initiatives have 
proven to stimulate lasting changes in university structures.

Such interdisciplinary programmes also promote students 
in learning the “language” of the other discipline, while 
being anchored in a home discipline. There will always be 
some concern about juggling interdisciplinary breadth and 
intradisciplinary depth. This is something for which tailored 
solutions can be found in individual development plans7, 
enlisting the supervisor(s)’ experience and depending on 
the nature of the research project and the student’s needs.

In mathematical biology education more generally, there has 
been an enormous spectrum of initiatives and considerable 
changes in the past 1-2 decades. An impressive collection of 

these changes are summarised in the review by Jungck et al. 
(2020). Many, if not most, major research universities now 
have courses on mathematical biology; some universities 
even offer degree programmes in this area. However, the 
majority of universities probably still lack critical mass to offer 
courses or projects in mathematical biology that build upon 
each other and could thus reinforce learning. Furthermore, 
existing courses in mathematical biology are often inacces-
sible to students who have not yet completed the classical 
prerequisite courses, e.g., in linear algebra and (multivariable) 
calculus. A course design with such prerequisites can be 
an impediment to attract interested students from nearby 
disciplines (cf. Miller and Alben, 2012).

A major “asset” of mathematical biology is the high motiva-
tion of students to learn about applications of mathematics 
in biology, i.e., in living systems to which they can intuitively 
relate. Reed (2015, p. 1175) writes:

“Most people acknowledge the traditional important 
applications of mathematics to physics, from the motions 
of the planets to quantum mechanics, nuclear fission and 
the bomb, and fluid flow over airplane wings. Unfortu-
nately, most people just aren’t very interested in physics 
(Voltaire had it right), so they acknowledge the importance 
but aren’t that moved. How about the applications of 
number theory to cryptography? Again, everyone sees 
that it is important to have secure communications, but 
they’re not very interested in how it gets done. Leave it 
to the geeks! But biology is a different story. Everyone 
is interested in his or her own body and how it works. 
Everyone wants to be free of disease and live a long time. 
Everyone (well almost everyone) knows that we’d better 
be good stewards of our ecosystems or we and our children 
are doomed. So, when you tell them how mathematics is 
contributing, they are really interested. And this has the 
potential, in the long run, to greatly improve the public 
perception of mathematics.”

To get prospective students (and also the general public) 
more interested in mathematics and its applications, there 
are a host of outreach activities. For example, universities 
or departments organise Open Days, where students and 
lecturers show how much fun mathematics is and for what it 
can be “used”. In some countries, including the UK, there is 
an established tradition of TV programmes with researchers 
or educators explaining science. More recently, children in-
creasingly use social media platforms to complement their 
learning with short video tutorials, some of which point out 
modern applications of mathematics. To reach out to school 
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teachers, Seshaiyer and Lenhart (2020) describe a number 
of modelling activities, in which teachers have engaged via 
professional development programmes and which they have 
incorporated in the classroom. For undergraduate students, 
there are offers of summer research opportunities, interns-
hips, workshops or bursaries, which often motivate them to 
pursue mathematical biology in their graduate studies (e.g. de 
Vries and Hillen, 2008). Undergraduate research experience 
programmes have also been run by the Mathematical Bios-
ciences Institute and the National Institute for Mathematical 
and Biological Synthesis. Both institutes have, more broadly, 
actively supported mathematical biology through workshops, 
working groups, visitor programmes, fellowships, education 
and outreach programmes. Synthesis centres have emerged 
in the past two decades and created community-oriented 
research infrastructure (Baron et al., 2017).

CONCLUSIONS AND OUTLOOK

As a scientist, it is hard enough to be an expert in one area. 
To be an expert in two areas is very difficult. So a key aspect 
is being able to communicate with researchers in other disci-
plines. This implies having enough knowledge to understand 
what scientists in other disciplines are talking about. Another 
key aspect is being able to communicate within your own 
discipline. For instance, there are so many areas of mathe-
matics coming together in biology now (e.g., from dynamical 
systems over networks to group theory) that it is impossible 
to be an expert in all of these areas. Similarly, biology itself 
is so diverse that its research fields are fragmented (cf. Reed, 
2004). Mathematical biologists therefore need both intra- and 
interdisciplinary competencies. 

Considering all the changes in mathematical biology that 
happened over the last 40 or so years, it is difficult to predict 
where the field will be in 10-20 years’ time. What seems 
clear is that, on the one hand, biology continues to provide 
hard challenges for mathematics because of the multiple 
temporal and spatial scales, the heterogeneity of individuals 
and evolutionary dynamics. In addition, the enormous data 
streams in all areas of biology, as well as the pace at which 
computational predictions grow faster than our understan-
ding of biological systems, will require new mathematical 
developments. On the other hand, there has been a tighter 
integration of mathematical biology with experiments over 
the past years. This can be seen, for example, in the growing 
number of examples where mathematicians are integrated 
into clinics and biological departments. At the same time, 
the progress in biology increasingly requires researchers to 
use quantitative skills. Biology is becoming so sophisticated 

that researchers essentially cannot escape computation and 
advanced mathematics. Many biology journals nowadays 
require theory and modelling in addition to data. And they 
sometimes even feature mathematical approaches as cover 
articles—something unheard of a while back. 

Progress in biology will depend on our ability to formulate 
theories, for which mathematics provides the quintessential 
clarity (Cohen, 2004; May, 2004). Therefore, “simple” theore-
tical models8 also continue to be relevant when they capture 
the mechanistic essence of a complex system, improve our 
understanding of biological phenomena, and provide novel 
insights or suggest new experiments (e.g., Segel and Edels-
tein-Keshet, 2013). They can influence the way we understand 
biological systems and also have an impact on decision-making 
and management (e.g., DeAngelis et al., 2021).
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----------------------

1. Held at the Federal University of Santa Maria in Santa 
Maria, RS, Brazil, from October 5–7, 2022.

2. Corner et al. (2015) provide an illustrated handbook with 
twelve practical principles for the communication about 
climate change uncertainties.

3. As part of the Virtual Forum for Knowledge Exchange in 
the Mathematical Sciences (V-KEMS), convened by the 
International Centre for Mathematical Sciences, Isaac 
Newton Institute, Newton Gateway to Mathematics 
and the Knowledge Transfer Network working with 
various representatives from the mathematical sciences 
community.

4. E.g., the Scientific Pandemic Influenza Group for 
Modelling in operational mode (SPI-M-O) became a 
formal subgroup of the Scientific Advisory Group for 
Emergencies (SAGE).

5. Established by the Royal Society’s Rapid Assistance in 
Modelling the Pandemic initiative.
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6. Recall the almost overwhelming rate of posting of new 
preprints during the course of the pandemic.

7. Individual development plans are mutual agreements 
between a graduate student and the supervisor(s). They 
are intended to identify needs in training, resources or 
research infrastructure. They clarify responsibilities 
of both student and supervisor(s), and are thought to 
improve orientation and transparency in the student’s 
qualification process.

8. Sometimes also called generic, strategic or stylized 
models; see Evans et al. (2013) and references therein 
for terminology.
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