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ABSTRACT

In this work, we analyze the spread of an infectious disease in a not necessarily homogeneous multipopulation that interacts
and is distributed in a discrete two-dimensional lattice (network) that acquires only partial immunity to the circulating stain.
We use the solution properties of the proposed model to motivate the effects of including space in the dynamics. We show
that the dynamics is largely influenced by the topology of the interactions between the different populations. The theoretical
results are investigated numerically.
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RESUMEN

En este trabajo analizamos la propagación de una enfermedad en una multipoblación no necesariamente homogénea que inter-
actúa y se distribuye en una red discreta bidimensional que adquiere solo inmunidad parcial a la mancha circulante. Usamos
las propiedades de solución del modelo propuesto para motivar los efectos de incluir el espacio en la dinámica. Mostramos
que la dinámica está influenciada en gran medida por la topología de las interacciones entre las diferentes poblaciones. Los
resultados teóricos se investigan numéricamente.
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1 INTRODUCTION

I nfectious diseases are caused by infectious agents or
pathogens, such as bacteria, viruses, and fungi, which

make their host sick. Most of these pathogens can undergo
genetic mutations, known as variants or mutating strains,
that increase their spread power, resistance, or pathogenic-
ity (ability to cause symptoms), virulence (intensity of host
harm), and risk to the human population, see, for example,
Hethcote (2000); Casagrandi et al. (2006) and references
therein.

The emergence of such mutating strains makes it possi-
ble for contagion to occur again even if the host has already
had contact with the virus, as the immune system does not
recognize these variants. In this situation, the host acquires
only temporary immunity, also known as cross-immunity,
e.g. Casagrandi et al. (2006). Infectious diseases with the
ability to mutate strains include the Influenza-type and the
Sars-Cov-2, e.g., Andreasen (2020); Grifoni et al. (2020);
Casagrandi et al. (2006) and references.

Since the pioneer work of Bernoulli (1760), mathematical
models have gained more and more visibility as a tool for
testing biological hypotheses in disease dissemination. Par-
ticulary, the effects of their strain mutations over time, for
example, Diekmann et al. (1995); Casagrandi et al. (2006).

Once most infectious diseases pass from an infected host
to a susceptible one due to some kind of contact, the model
prediction will strongly depend on the probability of contact
between susceptible and infected individuals. If the popula-
tion is assumed to be homogeneous, that is, the probability of
contact between susceptible and infectious individuals is the
same in the total population, then the so-called SIRC model
(Susceptible, Infected, Recovered, Cross Immune), proposed
in Casagrandi et al. (2006), has become a well-accepted
model that includes the assumption of cross immunity (a
proportion of individuals that acquire only partial immunity
to the undergoing disease Casagrandi et al. (2006)) over the
well-known SIR-type models Hethcote (1989, 2000); Brauer
et al. (2019).

Most populations are not well mixed due to factors such as
geographical and social barriers, social and work activities,
and public transportation, to name a few. As a result, the
contact probability among individuals in the total population
is non-homogeneous. However, the nonhomogeneous nature
of population mixing does not mean that this is a random
process; see Sattenspiel and Dietz (1995) and the references
therein. Nonrandom mixing among spatially distributed sub-
populations has many consequences for the outcomes of dis-
ease spread, for example Sattenspiel and Dietz (1995); Lazo
and De Cezaro (2021); Rossato et al. (2021); Marques et al.
(2022a) and references therein.

A common approach to analyzing the spatial spread of in-
fectious diseases is modeling by discrete temporal popula-
tion models, or metapopulation models, for example Rossato
et al. (2021); Brauer et al. (2019); Marques (2019), and ref-
erences therein. Although there are a significant number of
recent references in the literature, for example, Brauer et al.

(2019) and references therein, continuous-time mathematical
models with spatially distributed populations are less com-
mon then discrete epidemiological models.

In Sattenspiel and Dietz (1995), the authors investigate
the effects of migration dynamics coupling in a continuous-
time multi-population SIR model. In Lazo and De Cezaro
(2021) and Marques et al. (2023) the emerging of a plateau-
like shape of the infected population is analyzed due to the
mixed interaction in a multi-population SIR model with-
out migration. In Gomes and De Cezaro (2022), a multi-
population SIRD-type model was proposed to analyze the ef-
fects of COVID-19 on an age-distributed population as a con-
sequence of the reopening of schools. The well-posedness
and numerical simulations for a fractional SIRC model with
two populations that interact were presented in Maurmann
et al. (2023). The simulations presented in Maurmann et al.
(2023) suggest that the existence of immunological memory
in both subpopulations induces a favorable epidemiological
situation, with fewer infections and fewer cross-immunities.
In Marques et al. (2022b), the authors analyze a multi-
population SIRC type model numerically. Numerical simu-
lation scenarios were analyzed in which the effect of disease
reintroduction after a period of time was simulated, simulat-
ing the emergence of a new strain. The simulations presented
show a tendency to continue to grow in cross-immunity due
to the reinfection.

Main contributions and paper organization: In this
contribution, we explore the effects of inclusion of space
in the diseases dynamics of the SIRC-type multipopulation
model. The proposed SIRC-type model under investigation
assumes the existence of different (not necessarily homoge-
neous) multipopulation interacting and distributed in a dis-
crete two-dimensional grid (network). We used the smooth-
ness and monotonic behavior of the solution of the SIRC
model with multiple populations to show that the spread ve-
locity and intensity of the disease in the network are mono-
tonically dependent on the neighborhood topology (denoted
by Vi, j, see below) and the intensity of the interaction (de-
noted by βî, ĵ, see below). The theoretical results are exam-
ined numerically, providing some clues to the mechanisms of
disease spread, loss of host immunity, or partial transient im-
munity in inhomogeneous populations. Understand the dy-
namics behavior of diseases in spatial distributed and non-
homogeneous populations are essential for surveillance by
public health authorities, who propose preventive measures
and vaccination strategies to mitigate the impact of an emerg-
ing disease.

In Section Model description and its well-posedness, we
present the spatially distributed multipopulation SIRC model
and prove its well-posedness. In Section The effect of intro-
ducing space in the disease dynamics, we used the behavior
trajectory and the smoothness properties of the existing so-
lution for the proposed model to motivate the effects of the
introduction of space in the dynamics of diseases. In par-
ticular, we show that the diffusion velocity and intensity of
diseases are monotonically dependent on the neighborhood
topology and interaction intensity between the distinct popu-
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lations in the lattice. The results are numerically verified in
Subsections Scenario 1 and Scenario 2.

2 MODEL DESCRIPTION AND ITS WELL-
POSEDNESS

We assume the existence of a two-dimensional lattice
(nomenclature derived from the theory of Coupled Map Lat-
tice (CML) Marques (2019), where each patch (also known
as site pixel or cells) (xi,x j) is represented by integer co-
ordinates (with xi = is, x j = js, where s is the size of the
site), for i ∈ {1, · · · ,k} , j ∈ {1, · · · ,n}. In each one of the
(n×k) patches is the home of a distinct, spatially distributed
subpopulation, in which Ni, j represents the individual’s den-
sity (which corresponds to the total number of individuals in
the site). Furthermore, in each of the patches (i, j), the den-
sity of individuals Ni, j in the subpopulation is proportion-
ally distributed, at any time t ≥ 0, in the susceptible com-
partments Si, j(t), infectious (infected) Ii, j(t), recovered (re-
moved) Ri, j(t) and cross-immunity Ci, j(t). In this case, the
proportional cross-immunity of the population refers to indi-
viduals who have acquired partial immunity but are suscep-
tible to any mutation of the circulating stain within a short
period of time. There is no migration of the population from
one site to another, in contrast to the approach in Sattenspiel
and Dietz (1995). The infection might occur even in such a
situation, due to the interaction between subpopulations dur-
ing work hours or in public transport. But at the end of the
day, everyone is back at his home site, where infections are
reported. In other words, the assumption of no migration
is satisfied by considering that the interaction between dis-
tinct subpopulations occurs in an infinitely small time step
relative to the time of the disease dynamics t, such that indi-
viduals from different populations interact and return to their
reference sites faster than the time t → t +∆t of the disease
dynamics.

Therefore, the population Ni, j at each site remains constant
for any time t ≥ 0. The disease is transmitted from infected
individuals to susceptible individuals by the following mech-
anisms: i) If they belong to the same site, then transmission
is proportional to the constant contact rate βi, j > 0, ii) An-
other source of transmission occurs by contact between sus-
ceptible individuals at the site (i, j) with infected individuals
in the neighborhood Vi, j := {sites (î, ĵ) : (î, ĵ) 6= (i, j)}. We
assume that the transmission between individuals of differ-
ent populations is proportional to the constant contact rate
βî, ĵ > 0 if (î, ĵ)∈Vi, j or βî, ĵ = 0 if (î, ĵ) /∈Vi, j. Therefore, the
neighborhood Vi, j determines the topology of contact among
different subpopulations in the network, and the parameter
βî, ĵ is related to the intensity of interaction with the nearby
population.

In the following, we represent the proportion of the in-
fected neighborhood as

II := ∑
î, ĵ∈Vi, j

βî, ĵIî, ĵ(t) . (1)

Hence, Si, jII is the probability that susceptible individuals

from the site (i, j) become infected due to contact with indi-
viduals from some of neighboring sites in Vi, j, with rate of
contagious βî, ĵ.

We assume that disease dynamics is modeled by a spatially
distributed multi-population SIRC-type model, with a nor-
malized and constant total population Ni, j. Using the mass-
action law, the dynamics is given by

Ṡi, j = µi, j(Ni, j−Si, j)−Si, j (βi, jIi, j + II)+ γi, jCi, j

İi, j = Si, j (βi, jIi, j + II)+σi, jβî, ĵCi, jIi, j− (µi, j +αi, j)Ii, j

Ṙi, j = (1−σi, j)βi, jCi, jIi, j +αi, jIi, j− (µi, j +δi, j)Ri, j (2)

Ċi, j = δi, jRi, j−βi, jCi, jIi, j− (µi, j + γi, j)Ci, j .

In (2), the parameters αi, j > 0,δi, j > 0,γi, j > 0 are the
inverse of the time that any individual remains in the com-
partments Ii, j, Ri, j and Ci, j, respectively, for i = 1, · · · ,n and
j = 1, · · ·k. The parameter σi, j is the probability of rein-
fection, while the parameter µi, j > 0 represents the mor-
tality/birth rate, which we assume to be equal for all sub-
populations.

Furthermore, the model given in (2) is con-
sidered with the following initial conditions
Xi, j(0) := (Si, j(0), Ii, j(0),Ri, j(0),Ci, j(0))T ∈ R4

+ :=
{Xi, j(t) := (Si, j(t), Ii, j(t),Ri, j(t),Ci, j(t))T ∈ R4 :
Si, j(t) ≥ 0, Ii, j(t) ≥ 0,Ri, j(t) ≥ 0,Ci, j(t) ≥ 0, t ≥ 0},
for i ∈ {1, · · · ,k} , j ∈ {1, · · · ,n}.

Note 1 The model given in (2) is a generalization of the
SIRC model proposed by Casagrandi et al. (2006) for multi-
populations that spatially interact without migration dynam-
ics; see Sattenspiel and Dietz (1995). In fact, if all subpop-
ulations are isolated, which is equivalent to setting II = 0
in (2) (or equivalently βî, ĵ = 0 for all sites (î, ĵ) ∈ Vi, j), we
have the SIRC model originally proposed in Casagrandi et al.
(2006), for each of the subpopulations. As a result, the term
Si, jII in the model given in (2) is related to the probabil-
ity that susceptible individuals from the site (i, j) become in-
fected due to contact with individuals from neighboring sites
in Vi, j, but without migration.

It is wort to mentioning that the specification of Vi, j and
βî, ĵ determines the topology of the multipopulation interac-
tion in the network. In particular, restriction on Vi, j and βî, ĵ
(for example, βî, ĵ = 0 represents the isolation of subpopula-
tion) and can be seen as a control strategy. In this case, if
a disease starts in a subpopulation, it will become confined
in such a population, insofar as there is no interaction be-
tween different subpopulations (βî, ĵ = 0), see Marques et al.
(2022a) and the references therein. If the network size is too
small or Vi, j contains as many neighborhood sites, then the
model dynamics given in (2) is expected to behave as a single
population model with a variable transmission rate βi,i. See
also the discussion in the next section. The topology of the
multipopulation interaction is the main subject of the numer-
ically simulated scenarios in Section numerically simulated
scenarios.

The assumption of non-migratory dynamics and the birth
/ mortality rates to be constant implies that the number of in-
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dividuals in each subpopulation Ni, j remains constant. The
nonmigration assumption allows us to analyze the effects
of the neighborhood interaction topology analytically, as
shown in Section Effects of introducing space in the disease
dynamics. However, it is one of the weaknesses of the pro-
posed model. We aim to analyze the model given in (2) with
some migration patterns, for example, the one proposed in
Sattenspiel and Dietz (1995) in future contributions.

In the following, we present the well-posedness of the
model given in (2), which supports the forthcoming analysis
and the numerically simulated scenarios and their interpreta-
tions presented in Section Numerical simulated scenarios.

Theorem 1 Let the parameters of the model given in (2)
be constant and the initial conditions given by Xi, j(0).
Then, there exists a unique, continuously differentiable and
non-negative solution X(t) (a vector with n · k coordinates
corresponding to (Si, j(t), Ii, j(t),Ri, j(t),Ci, j(t)), for all, i =
1, · · · ,n, j = 1 · · · ,k, with non-negative coordinates) for any
t ∈ [0,+∞[, that continuously depends on the model param-
eters and initial conditions.

Sketch of the Proof: Since there is no migration, then sum-
ming over all the equations in the model given in (2), it fol-
lows that the total population at each site remains constant for
all t. As a result, Si, j, Ii, j, Ri, j and Ci, j are uniformly bounded.
Therefore, the Jacobian matrix corresponding to the right-
hand side of model defined in (2) is uniformly bounded.
Then, from the Mean Value Theorem Hale (1980) we see
that the right-hand side of (2) is right-hand continuous with
respect to t and Lipschitz continuous with respect to Si, j, Ii, j,
Ri, j and Ci, j, for i = 1, · · · ,n, j = 1, · · · ,k. The continuity
of Si, j, Ii, j, Ri, j and Ci, j, for i = 1, · · · ,n, j = 1, · · · ,k, also
follows straightforward arguments. It follows from classical
results on dynamical systems, e.g., Hethcote (2000), the exis-
tence of a unique smooth and positive solution X(t) as stated
in the Theorem, in the interval [0,T ], for some T > 0. Since
the solution is uniformly bounded by Ni, j, it follows that the
right-hand side of the system proposed in (2) can be bounded
by an affine function depending only on the solution of the
model X(t) and the model parameters. Therefore, using the
classical results of the dynamical system Hale (1980), the so-
lution can be continuously extended to the positive real line.
�

3 EFFECTS OF INTRODUCING SPACE IN THE
DISEASE DYNAMICS

In this section, we address some interesting conclusions
about some of the effects of space inclusion in disease dif-
fusion dynamics based on the behavior and properties of the
solution of the model given in (2).

First, it should be noted that Theorem 1 implies that II
(defined in (1)) is a monotonically increasing function of the
neighborhood topology Vi, j and its intensity βî, ĵ, at any given
time t ≥ 0, as a result of Ii, j(t)≥ 0.

Hence, from the first equation in the model given in (2), we
can see that Si, j(t) remains a decreasing function of t when-
ever

Ci, j ≤
(Si, j(βi, jIi, j + II)−µi, j(Ni, j−Si, j)

γi, j
. (3)

In the early stages of the diseases, Ci, j = Ci, j(0) = 0 or
Ii, j = 0 (in the remaining non-infected sites).

The basic reproduction number1

In any case, if the neighborhood Vi, j is not empty and has
some proportion of infected individuals such that R

(i, j)
0 > 1,

then it follows from the second equation of the model given
by (2) that Ii, j will increase. Since Ni, j is constant, it follows
that Ii, j(t)< ∞, for all t ≥ 0.

As a result of the properties mentioned above and the
smoothness of Ii, j(t) (see Theorem 1), we conclude that there
will be a solution trajectory for Ii, j(t) (depending on the
neighborhood topology of II) that has a concave hump, as
shown in Figure 4-a). Therefore, Ii, j(t) reaches its maximum
at a point t i, j

p ∈]0,+∞[, known as the turning point, within
Ii, j(t

i, j
p ) 6= 0. From the maximality of Ii, j at t i, j

p we have
İ(t i, j

p ) = 0. Hence, from the second equation in the model
given by (2) that

Si, j(t i, j
p ) =

(µi, j +αi, j)−σi, jβi, jCi, j(t
i, j
p )

βi, j

 1

1+ II(t i, j
p )

βi, jIi, j(t
i, j
p )

 . (5)

The analysis of equation (5) reveals some possibilities
whose consequences is worth exploring is as follows:

i) In the first analysis, (3) implies that Ci, j increases with
II. On the other hand, since the number of suscepti-
bles is always non-negative (see Theorem 1), then (5)
implies the following threshold for the cross-immunity,
given by

Ci, j(t i, j
p )≤

(µi, j +αi, j)

σi, jβi, j
. (6)

Such bound is independent of the neighborhood topol-
ogy. This phenomena is observed numerically in Fig-
ures 2 and 4-b).

1Quantity that expresses the expected number of cases directly generated
by one case in a population and within the selected population at the initial
phase of the infection Diekmann (1990); van den Driessche and Watmough
(2002). of the population (i, j), calculated using the next generation matrix
Diekmann (1990); van den Driessche and Watmough (2002), is given by

R
(i, j)
0 = (µi, j +αi, j)

−1

βi, j + ∑
î, ĵ∈Vi, j

βî, ĵ

 . (4)

Therefore, we can have R
(i, j)
0 > 1, even when the basic reproductive number

of totally isolated subpopulations R̃
(i, j)
0 := βi, j

αi, j+µi, j
< 1 (which corresponds

to the case where βî, ĵ = 0). As a consequence, the asymptotical stability of
the disease-free equilibrium point at a site (i, j) also depends on the neigh-
borhood topology given in (1), (see the analysis derived in Marques et al.
(2023) for the spatially distributed SIR model).
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ii) In an isolated population, that is, in a site (i, j) where
Vi, j is empty (or βî, ĵ = 0), then the number of suscepti-

bles at t i, j
p is

Si, j(t i, j
p ) =

(µi, j +αi, j)−σi, jβi, jCi, j(t
i, j
p )

βi, j
. (7)

iii) Increasing the network topology Vi, j or the intensity
interaction βî, ĵ, causes Si(t i

p) to decrease (since the
denominator in (5) increases), and therefore I(t i

p) in-
creases. Figures 1, 10 and 12 depicted this situation.

iv) As a consequence of items ii) and iii), Si(t
i, j
p ) remains

at its highest possible value in the scenario where there
is minimal interaction between populations and cross-
immunity.

he effects of introducing space into the model dynamics
proposed in (2) and it relation to above-mentioned situations
i), ii), iii) and iv) will be addressed numerically in the fol-
lowing subsection.

4 NUMERICAL SIMULATED SCENARIOS

In this subsection, we investigate numerically the effect that
the interaction between distinct subpopulations following the
dynamics given in (2) has on the disease dynamics that reflect
the situations i), ii), iii) and iv) described above. In all the
presented simulations, the solution X(t) of the model given
in (2) is numerically obtained using the Euler method with a
step-size of h = 10−4 that guarantee the numerical acurracy
of the aproximation and avoids the stiffness phenomena, see
da Silva et al. (2023.No Prelo). The network has 14× 14
sites, which means that n = k = 14. Furthermore, the param-
eters αi, j = 52.14, δi, j = 0.75, µi, j = 0.00001, γi, j = 0.35 and
σi, j = 0.12, for i, j ∈ {1, · · · ,14}, based on the parameters
given in Casagrandi et al. (2006), are kept fixed in all simu-
lations. Therefore, as previously announced in Remark 1, we
shall see below the effects of the neighborhood of interaction
topology Vi, j and its intensity given by the parameter βî, ĵ on
the disease behavior for the infected and cross-immunity por-
tions of each of the populations.

SCENARIO 1: EFFECTS ON DISEASE DYNAMICS DUE TO
VARIATION OF THE DISTINCT POPULATION INTENSITY
INTERACTION βî, ĵ , WHILE THE NEIGHBORHOOD OF IN-
TERACTION TOPOLOGY Vi, j IS KEPT FIXED

In all simulations presented in this first scenario, we assume
that each population located in the patch (i, j) of the lattice
interacts only with the four neighbors in a rectangular vicin-
ity Vi, j that has a common face interception, also called the
Neumann-type neighborhood, e.g. Marques (2019). In Fig-
ures 1 and 2, we see the effects on the dynamics of the total
infected and cross-immunity population for different choices
of interaction intensity βî, ĵ 6= 0 for (î, ĵ) ∈Vi, j and zero else-
where. More specifically, in all simulated scenarios, we have:

1) The density Ni, j is constant, corresponding to a total
population of 100 individuals in all the 14×14 patches;

2) Infection starts at two distinct sites simultaneously at
t = 0. They correspond to the sites of the positions
(10,5) and (5,11) in the lattice. The total number
of infected individuals in such patches is I10,5(0) =
I5,11(0) = 20.

3) The initial conditions Xi, j(0) are such that Si, j(0) = 100
and Ii, j = 0 if (i, j) 6= (10,5) or (i, j) 6= (5,11) and
S10,5 = S5,11 = 80 (see item 2) and Ri, j(0) =Ci, j(0) = 0
in all patches.

4) The distinct population interaction intensity is such that
βî, ĵ = βi, j/κ in Vi, j and βî, ĵ = 0, otherwise, the values of
κ are chosen for simulated sub-populations with a large
or a small interaction in the vicinity Vi, j as follows:

Case 1, κ = 15000; It corresponds to βî, ĵ = 0.00783
and is the lower intensity interaction in the simulated
scenarios.

Case 2, κ = 1500; It corresponds to βî, ĵ = 0.0783 and is
the middle-lower intensity interaction in the simulated
scenarios.

Case 3, κ = 150; It corresponds to βî, ĵ = 0.783 and is
the middle-large intensity interaction in the simulated
scenarios.

Case 4, κ = 15. It corresponds to βî, ĵ = 7.83 and is the
large intensity interaction in the simulated scenarios.

In Figures 1-4, we presented the simulated scenarios using
the settings of this subsection. It is possible to see in Figure 1
that in Case 1 and 2 for the choices of βî, ĵ the total infected
proportion of the population presents an oscillatory behavior
due to the time it takes for the diseases to spread between
different sites (compare with equation (5)). This behavior is
not observed for the interaction of medium-large and high
intensity βî, ĵ, because in such cases the spread velocity of
the diseases between different populations is large, see red
and pink curves in Figure 1 (since II is large in (5)). The
intensity of interaction between different populations βî, ĵ is
also monotonically related to the proportion of the infected
population at the time of selection of infection (see Figure 1
and compare with Equation (5)). Monotonic behaviors
are reflected in the proportion of cross-immunity of the
population in terms of the choices for βî, ĵ, as presented in
Figure 2. The spatial distribution of the cross immunology
for Case 1 at time t = 0.4 and Case 4 at time t = 0.25 is
presented in Figure 3 on the right side. As can be observed
in Figure 3, the cross-immunity front wave does not cover
the lattice in Case 1, but has fulfilled all the patches for Case
4, even considering an earlier time for the last case. Such a
behavior implies that cross-immunity achieves stability early
for a large distinct population interaction βî, ĵ, as presented
in Figure 2. A similar distribution can be observed in the
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infected population Figure 3 on the left.

In Figure 4, we show the evolution of the dynamics for
infected and cross-immunity populations in different lattice
patches for the intensity of interaction, representing Cases 1
and 4, respectively. The main difference in infected popula-
tions is the time at which the peaks occur (see also (5)). At
the patch (5,11) where the disease started, we observe the
first and more intense peak (see the Figure 4(a)). Another
interesting fact is the time interval in which the dynamics
between sites occurs when comparing cases 1 and 4. When
there is more interaction (Case 4), the time interval between
one curve and another is much shorter than in Case 1, in other
words, the diffusion of the disease in the space is faster (see
the R i, j

0 in( 4)).

SCENARIO 2: EFFECTS ON THE DISEASES DYNAMICS
DUE TO VARIATION OF NEIGHBORHOOD TOPOLOGY Vi, j

In this subsection, we present numerical simulation scenar-
ios for distinct choices of the neighborhood topology Vi, j and
will discuss its effect on the dynamics of the disease. In par-
ticular, it shows another point of view of the effects of the
space interaction on the dissemination of diseases. The re-
sults presented in Figures 10- 13 show the distinct dynamics
of disease dissemination in the following neighborhoods:

• Neumann neighborhood: In such a neighborhood, each
population (patch) interacts only with the four neigh-
bors in a rectangular vicinity Vi, j that has a common face
of interception (see Figure 5);

• V neighborhood: In such a neighborhood, each pop-
ulation (patch) interacts only with the eight neighbors
in a plus-shaped (not rectangular) vicinity Vi, j (see Fig-
ure 6);

• V* neighborhood: In such a neighborhood, each popu-
lation (patch) interacts only with the eight neighbors in
a plus-shaped (not-rectangular) vicinity Vi, j but the in-
tensity of the distinct population interaction βî, ĵ is 1/2
of the neighbor site that has a common face interception
(see Figure 7);

• Moore neighborhood: In such a scenario, each popula-
tion (patch) interacts with the eight neighbors in a rect-
angular vicinity Vi, j (see Figure 8);

• Moore* neighborhood: This is a variation of the Moore
neighborhood, where we considered that each popula-
tion (patch) interacts with the eight neighbors in a rect-
angular vicinity Vi, j but, in the absence of a common
face interception in the vicinity, the intensity of the dis-
tinct population interaction βî, ĵ is 1/2 of the neighbor
site that has a common face interception (see Figure 9);

In all simulations presented in this subsection, we used the
intensity of interaction between the different subpopulations
in the vicinity to be chosen as βî, ĵ = βi, j if (î, ĵ) ∈ Vi, j and

βî, ĵ = 0 elsewhere. The remaining parameters of the model
given in 2 are the same as those described at the beginning
of this section. Therefore, the effect of space throughout the
neighborhood topology Vi, j is what makes the analysis dif-
ferent from the SIRC model with homogeneous population
analyzed elsewhere in Casagrandi et al. (2006). See also the
comments on Remark 1.

In Figure 10, we show the dynamics of the infected
proportion of the total population for different configurations
of Vi, j as explained above. We can observe that for Vi, j with
the same number of neighbors, the curves are very close
(see the blue and green curves in Figure 10 for example
and compare them with equation 5). The proportion of
cross-immunity in the population has a more evident peak
for smaller neighborhoods (see the blue curve in Figure 11).

We will present two situations for distinct initial con-
ditions, indeed: a) the disease started in two patches,
namely the patches (10,5) and (5,11), respectively. For
such a scenario, the initial conditions are the same as those
described in Subsection Scenario 1. b) The disease started
in only one patch, namely (5,11). In such a case, the initial
conditions are such that I10,5 = 0 and then S10,5 = 100. The
remaining initial conditions remain the same as before.

In Figure 12, we show the dynamics of the total infected
population in the network due to the distinct choices of the
neighborhood and the initial conditions, in three distinct
sections of the simulated time intervals. The early dynamics
of the infection is presented in Figure 12,-a). It is worth
noting that infection pick is monotonically decreasing with
the number of neighborhood sites in the vicinity Vi, j and the
intensity interaction βî, ĵ. Moreover, it suffers a small shift in
time and a considerable decrease in its maximum due to the
initial conditions, with the infection beginning at only one
site. Figure 12 b) and c) show an oscillating and time shift
with the prevalence of the diseases in the long run of the
model (2) dynamics, that are independent of the simulated
initial conditions. In particular, this result shows that (5)
remains true.

In Figure 13, we present the dynamics of the proportion
of cross-immunity of the total population, for the simulated
scenarios described in this subsection. The simulations
presented show that the dynamics of the cross-immunity
is independent of the vicinity Vi, j and the initial conditions
in the short duration of the diseases (up to t = 0.5). Then,
it presents a monotonically decreasing behavior with the
number of neighborhoods and the intensity interaction βî, ĵ
in the neighborhood topology Vi, j. Then it presented and
shifted the oscillatory behavior independent of the vicinity
topology or initial conditions. Therefore, (6) is numerically
verified.

In Figure 14 we present the spatial distribution of the in-
fected population at the beginning of the infection t = 0.002
for different types of neighborhoods. Note that the sites
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(subpopulations) already affected by the infection differ
significantly in each case. For the type V neighborhood,
we observed that the sites with the presence of infected
people already exceeded half of the network. This fact is
also observable in the Figure 10(a), in which the largest
fractions of the affected population correspond to the V and
V ∗ neighborhoods.

The simulation regarding distinct topologies for vicinity
choices shows a monotonically increasing and a shifted pick
of infection. Also, there is a monotonically decreasing pick
of cross-immunity in the total population with respect to the
number of neighbors in the vicinity. This monotonic behav-
ior is also observed due to the number of infected sites in
the initial conditions for the total infected populations, but
is not observed in the cross-immunity dynamics (see (6) and
(5)). The number of neighbors in the vicinity implies a shift-
ing oscillatory behavior and the permanence of the disease
infection and cross-immunity in the total population.

5 CONCLUSION AND FUTURE DIRECTIONS

In this contribution, we discuss the effects of space inclusion
on the behavior dynamics of a disease in which distinct and
not necessarily homogeneous interacting multi-populations,
distributed in a discrete two-dimensional network, acquire
only partial immunity to circulating stain, modeled by a com-
partmental multi-populational SIRC-type model without mi-
gration. The properties of the model solution were used to
show that the spread velocity and intensity of the disease to
reach its peak of infection in the network are monotonically
dependent on the topology of the neighborhood Vi, j and the
intensity of the interaction βî, ĵ, while the cross-immunity is
uniformly bounded independently of such quantities. These
theoretical results are examined numerically in some partic-
ular cases for neighborhood topology Vi, j and interaction in-
tensity βî, ĵ (see Subsection Scenario 1-Scenario 2). As far
as the authors are aware, such results were not investigated
elsewhere. The results obtained provide some clues about the
mechanisms of disease spread and loss of host immunity or
transient partial immunity in inhomogeneous populations.

Future developments of this approach include the analysis
of equilibrium points and stability.
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Figure 1: The dynamic behavior of the proportion of the total infected population for distinct choices of the intensity of the population
interaction in a Neumann type neighborhood.

Figure 2: The dynamic behavior of the proportion of the total cross-immune population, for distinct choices of the intensity of the
population interaction in a Neumann type neighborhood.
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(a) Spatial distribution of the infected and cross-immune population in the lattice at time t = 0.4, in the scenario of
lower sub-population interaction, in a Neumann type neighborhood - Case 1.

(b) Spatial distribution of the infected and cross-immune population in the lattice at time t = 0.25 in the scenario of
large sub-population interaction in a Neumann type neighborhood - Case 4.

Figure 3
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(a)

(b)

Figure 4: (a) The dynamic behavior of the proportion of the infected population in distinct patches for the parameter setting in the
scenario 1, for κ = 1.500 and κ = 15, respectively. (b) The dynamic behavior of the proportion of the population of the cross-immunity in

distinct patches for the parameter setting in scenario 1, for κ = 1.500 and κ = 15, respectively.
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Figure 5: An example of spatial distribution in the case of a
Neumann neighborhood.

Figure 6: An example of spatial distribution in the case of a V
neighborhood.

Figure 7: An example of spatial distribution in the case of a V*
neighborhood.

Figure 8: An example of spatial distribution in the case of a
Moore neighborhood.

Figure 9: An example of spatial distribution in the case of a
Moore* neighborhood.
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(a)

(b)

(c)

Figure 10: The dynamic behavior of the proportion of the total infected population in different time intervals for distinct neighborhoods
for the parameter settings and neighborhood of the scenario 2.
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Figure 11: The dynamic behavior of the proportion of the total Cross-immunity population for distinct neighborhoods for the parameter
settings and neighborhood of the scenario 2.
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(a)

(b)

(c)

Figure 12: The dynamic behavior of the proportion of the total infected population in different time intervals for distinct neighborhoods
according to choices a) and b) for the initial conditions and for the parameter settings and neighborhood of the scenario 2.
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Figure 13: The dynamic behavior of the proportion of the total cross-immune population for distinct neighborhoods according to choices
a) and b) for the initial conditions and for the parameter settings of scenario 2.
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Neumann type neighborhood
(a) disease started at two patches (b) disease started at one patch

(c) Moore type neighborhood (d) Moore* type neighborhood

(e) V type neighborhood (f) V* type neighborhood

Figure 14: Comparison between different neighborhoods in t = 0.002.
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