
https://revistammsb.utem.cl | revista.mmsb@utem.cl

ISSN-L: 2735-6817 | ISSN (online): 2735-6817

Revista de Modelamiento Matemático de Sistemas Biológicos
Vol.3(2023), No.E, pp.1–9, e23E03

https://doi.org/10.58560/rmmsb.v03.n02.023.02

Pattern Formation in a Resource and
Two Consumers Discrete Model

Formación de Patrones en un Modelo Discreto
de un Recurso y dos Consumidores

Poliana Kenderli Pacini Selau1,2, Diomar Cristina Mistro2 and

Luiz Alberto Díaz Rodrigues2

B Poliana Selau: poli.kenderli@outlook.com

1 Departamento de Matemática,
Universidade Federal do Rio Grande do Sul,

Porto Alegre, Brasil

2 Departamento de Matemática,
Universidade Federal de Santa Maria,

Santa Maria, Brasil

Recepción: 2023-04-05 | Aceptación: 2023-08-21 | Publicación: 2023-10-29

Recommended Citation: Pacini Selau, P. et al. ( 2023). ‘Pattern Formation in a Resource and
Two Consumers Discrete Model’. Rev. model. mat. sist. biol. 3(E), e23E03, doi:10.58560/rmmsb.v03.n02.023.02

This open access article is licensed under a Creative
Commons Attribution International (CC BY 4.0) http://creativecommons.org/licenses/by/4.0/.
Support: CAPES - Code 001.

https://utem.cl
https://revistammsb.utem.cl
mailto:revista.mmsb@utem.cl
https://revistammsb.utem.cl
https://doi.org/10.58560/rmmsb.v03.n02.023.02
https://orcid.org/0000-0001-5911-0122
https://orcid.org/0000-0003-1869-9350
https://orcid.org/0000-0001-9909-5254
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


REVISTA DE MODELAMIENTO MATEMÁTICO DE SISTEMAS BIOLÓGICOS, Vol.3( 2023), NoE, e23E03 2 of 9

ABSTRACT

In this work, we propose a Coupled Map Lattice model to analyse the spatio-temporal dynamics of a system of three in-
teracting species: a resource species and two consumers. The resource is an insect with potential to become an agriculture
pest while one of the consumers is a parasitoid and the other, is a predator. All the three species reproduce at the same
time scale so that the dynamics is described by a system of three difference equations. The resource grows according to the
Beverton-Holt function and the consumption is described by the Holling type III functional response. By means of numerical
simulations, we observed that the pattern of species spatial distribution and the temporal density depend on the dynamical as
well as on the movement parameters. It can be stable or oscillating heterogeneous spatial distributions but the species can
also be homogeneously distributed in space. Finally, we observe that the inclusion of the space does not change the forecast
of extinction obtained by the local dynamics only for some parameters.

Keywords:

Coupled Map Lattice, Discrete Models, Resource Consumers models

RESUMEN

En este trabajo proponemos un modelo del tipo Redes de Mapas Acoplados para analizar la dinámica espacio-temporal de
un sistema de tres especies interactuantes: una especie recurso y dos consumidores. El recurso es un insecto con potencial
para convertirse en plaga agrícola, mientras que uno de los consumidores es un parasitoide y el otro, un depredador. Las
tres especies se reproducen en la misma escala temporal, de modo que la dinámica se describe mediante un sistema de trés
ecuaciones en diferencias. La especie recurso crece según la función de Beverton-Holt y el consumo se describe mediante
la respuesta funcional Holling tipo III. Mediante simulaciones numéricas, observamos que el patrón de distribución espacial
de las especies y la densidad temporal dependen tanto de los parámetros de la dinámica como de los de movimiento. Pueden
surgir distribuciones espaciales heterogéneas estables u oscilantes, pero las especies también pueden distribuirse homogénea-
mente en el espacio. Por último, observamos que la inclusión del espacio no modifica la previsión de extinción obtenida
únicamente por la dinámica local para algunos parámetros.

Palabras Claves:

Redes de Mapas Acoplados, Modelos Discretos, Modelos Recurso Consumidores
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1 INTRODUCTION

N atural enemies of insects represent an important tool
to control insect pest populations in agriculture. They

can help keeping the insect pest at acceptable densities and
hence, decrease the input of pesticides. Before introducing
biological species in the environment, it is important to
study the dynamics in order to avoid undesirable effects
such the extinction of non target species, for example. Most
studies on biological control deal with the interaction of an
insect pest and just one enemy. However, in natural habitats,
communities of many different species interact and the use
of multiple controlling agents in biological control is an
important topic for theoretical investigation (Hassel and
May, 1986; Jones et al., 1993; Hassell, 2000).

In the present work, we propose a discrete spatio-temporal
model to study the dynamics of three interacting species: a
resource species and two specialist consumers. The resource
species has potential to become an agriculture pest while
the consumers are the pest natural enemies. It can be,
for example, a rodent and two predators or an insect pest
and two parasitoids. For making the description and the
interpretation easier, we suppose that the resource species
is an insect pest; one of the consumers is a parasitoid and
the other is a predator. The resource species participates in
the interaction as host and prey at the same time; however,
we will refer to it by resource species in order to avoid
any confusion. The resource growth process is represented
by the Beverton-Holt model and its consumption by both
enemies is described by the discrete equivalent to the Holling
type III functional response (Kot, 2001). We also assume
that all the three species grow at the same time scale.

When the environment is markedly discrete and that the
dynamical processes occur at well defined time stages, a
model formulated in terms of Coupled Map Lattices (CML)
provide a good description (?Comins et al., 1992).

The paper is organized as follows: in the Coupled Map
Lattice Model Section we describe the CML model, the
local dynamics and the movement stage. In the section
Results we present the results of numerical implementations
of the proposed model while in the section Conclusions, we
discuss the results and make conclusions from the ecological
point of view.

2 COUPLED MAP LATTICE MODEL

The proposed CML model assumes a two dimensional
spatial domain, split in sites arranged as a lattice where
each site is identified by the index (i, j). The state of the
site (i, j) is described by three values corresponding to the
species density in the site. The dynamics is composed by
two different stages: the movement stage and the reaction
stage which occurs alternately (?).

Figure 1: von Neumann neighbourhood (gray sites) of site (i, j).

During the movement stage, the individuals of each
species disperse and are redistributed in the lattice. Several
mechanisms can promote the individuals movement such
as a random movement in homogeneous habitat; biased
movement due to attraction to some source of food as well
as repulsion to toxic substances or enemies; it can also be
due convection of the fluid where individuals leave such
as the wind or a river stream (Edelstein-Keshet, 1998).
Here, we consider that the environment is homogeneous and
individuals move randomly to its neighbours.

We define the neighbourhood Vi, j of site (i, j) as those sites
for which the individuals at site (i, j) can migrate. Here we
consider that individuals, of all the three species, at a site can
migrate to the four nearest sites. That is, we consider the von
Neumann neighbourhood defined by:

Vi, j = {(i−1, j);(i+1, j);(i, j−1);(i, j+1)},

and illustrated in Figure 1.
We represent by N

′
i, j,t the density of the resource species

and by P
′
i, j,t and W

′
i, j,t the density of the parasitoid and preda-

tors, respectively, in the site (i, j), after the movement stage
of generation t. At each generation, during the movement
stage, a constant fraction of each species: βN for the re-
source, βP for the parasitoid and βW for the predator, leaves
the site (i, j) and evenly migrates to the sites of Vi, j. Hence,
a fraction 1−βx, (where x = N,P or W ) of each population
remains in the site (i, j).

The equations for the proposed movement stage are:

N
′
i, j,t = (1−βN)Ni, j,t + ∑

(x,y)∈Vi, j

βN

4
Nx,y,t

P
′
i, j,t = (1−βP)Pi, j,t + ∑

(x,y)∈Vi, j

βP

4
Px,y,t

W
′
i, j,t = (1−βW )Wi, j,t + ∑

(x,y)∈Vi, j

βW

4
Wx,y,t .

(1)

Moreover equations (1), we consider reflective boundary
conditions, so that the fraction βx (x =N,P,W ) of individuals
located at a boundary site migrate to the three (or two, for the
sites in the four corners of the domain) neighbouring sites.
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That is, we suppose that the environment is uninhabitable
outside the domain and that individuals can sense the habitat
quality and decide do not leave it.

After the movement stage, all the interactions occur lo-
cally in each site: growth, intra-specific competition of the
resource individuals, parasitism and predation. The proposed
nondimensional equations for the dynamics are given by:


Ni, j,t+1 = N

′
i, j,t f (N

′
i, j,t)g1(N

′
i, j,t ,P

′
i, j,t)g2(N

′
i, j,t ,W

′
i, j,t)

Pi, j,t+1 = B1N
′
i, j,t(1−g1(N

′
i, j,t ,P

′
i, j,t))

Wi, j,t+1 = B2N
′
i, j,t(1−g2(N

′
i, j,t ,W

′
i, j,t)),

(2)
where Ni, j,t+1 is the resource density, Pi, j,t+1 and Wi, j,t+1 are
the density of the consumers at site (i, j) at the beginning of
generation t + 1, after the reactions have taken place. B1 is
the number of the parasitoid viable eggs in one resource in-
dividual and B2 represents the predator growth factor. Func-
tion f (N) which describes the resource growth, g1(N,P) and
g2(N,W ) which represent the resource density that escape
from parasitism and predation, respectively, are given by

f (N) = λ

1+(λ−1)N
k
,

g1(N,P) = e

(
−a1NP

1+(e1N)2

)
,

g2(N,W ) = e

(
−a2NW

1+(e2N)2

)
,

(3)

where λ , k, a1, e1, a2 a,d e2 are positive parameters.

In the absence of the consumers, the resource growths ac-
cording to the Beverton-Holt function f (N), which is equiv-
alent to the continuous logistic growth. λ > 1 is the resource
species intrinsic growth rate and k is its carrying capacity. We
assume that predators and parasitoids consume the resource
with Holling type III functional response. N(1− gx(N,1)),
(x = 1,2), is a sigmoidal curve which describes the density
of the resource species captured by one consumer during
one generation (see Figure 2). It assumes that the consumer
is inefficient at low resource densities. On the other hand,
consumers have a saturation effect at high resource densi-
ties. ax

(ex)2 , (x = 1,2), represents the maximum density of
the resource species captured by one predator (or killed by
one parasitoid) during one generation (Kot, 2001). That is,

lim
N→+∞

N(1− gx(N,1)) = ax
e2

x
, (x = 1,2). 1

ex
(x = 1,2) corre-

sponds to the resource density for which the fraction that
is captured (1− gx(N,1)) by one parasitoid is maximum;
that is, 1

ex
(x = 1,2) is the point of maximum of function

1−gx(N,1).

In order to identify the relevant groups of parameters,
we introduce the nondimensional variables ni, j,t = e2Ni, j,t ,
pi, j,t =

e2
B1

Pi, j,t and wi, j,t =
a2
e2

Wi, j,t in system (2) to obtain the
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Figure 2: Holling type III functional response: density of resource
captured by one predator (or killed by one parasitoid) during a

generation. That is, N(1−gx(N,1)) where x = 1,2.

following nondimensional equations for the dynamical stage:
ni, j,t+1 = n

′
i, j,tF(n

′
i, j,t)G1(n

′
i, j,t , p

′
i, j,t)G2(n

′
i, j,t ,w

′
i, j,t),

pi, j,t+1 = n
′
i, j,t(1−G1(n

′
i, j,t , p

′
i, j,t)),

wi, j,t+1 = µ2n
′
i, j,t(1−G2(n

′
i, j,t ,w

′
i, j,t)),

(4)
where ni, j,t+1 is the resource density, pi, j,t+1 and ni, j,t+1 are
the density of the consumers at site (i, j) at the beginning of
generation t + 1, after the reactions have taken place. Func-
tion F(n) which describes the resource growth, G1(n, p) and
G2(n,w) which represent the resource density that escape
from parasitism and predation, respectively, are given by

F(n) = λ

1+(λ−1) n
α2
,

G1(n, p) = e

(
−µ1np

1+α1n2

)
,

G2(n,w) = e
(
−nw
1+n2

)
.

(5)

The nondimensional parameters are µ1 = B1a1
(e2)2 , µ2 = B2a2

(e2)2 ,

α1 = ( e1
e2
)2 and α2 = e2k.

We observe that the equations for the movement stage (1)
in the nondimensional variables do not change.

3 RESULTS

Initially, we study the local dynamics. At each site (i, j), the
system (4) - (5) has five equilibrium solutions:

• P1 = (0,0,0), the trivial equilibrium;

• P2 = (α2,0,0), the resource only equilibrium;

• P3 = (n, p,0), the predator extinction equilibrium;

• P4 = (n,0,w), the parasitoid extinction equilibrium and

• P5 = (n, p,w), the coexistence equilibrium.

The standard Jury criterion for linear stability analysis, in-
dicates that P1 is never stable, since λ > 1. P2 is linearly
asymptotically stable given that:

doi: 10.58560/rmmsb.v03.n02.023.02
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(a)

(b)

(c)

Figure 3: Bifurcation diagrams with respect to µ1 for (a) resource
species, (b) parasitoid and (c) predator, with α1 = 1.0764,

α2 = 1.8, µ2 = 1.94 and λ = 2.

• 1) λ > 1;

• 2) α2
2 (µ1−α1)< 1 and

• 3) α2
2 (µ2−α1)< 1.

Due to the complexity of the expressions in system (4) - (5),
it is not possible to find neither the analytical expressions for
P3, P4 and P5 nor the conditions for their stability. Numer-
ical simulations indicate the existence and stability of these
equilibria as well as p−cycles and periodic limit cycles so-
lutions. Figure 3 illustrates the typical behaviour observed
in the dynamics through bifurcation diagrams of the popula-
tions with respect to µ1. For small values of µ1, P4 is stable;
as µ1 increases, the three species coexist and P5 is stable.
Further increase in µ1, which means that the parasitoid ef-
fectiveness increases, promotes the extinction of the predator
population and then P3 is stable until a bifurcation leads to
the emergence o limit cycles.

In order to study the spatio-temporal dynamics of model
(1), (4) and (5), we developed numerical simulations in
a 50 × 50 square lattice for several different dynamical

and movement parameters. Our main interest is identify
heterogeneous spatial distribution of the species. All the
simulations start from a heterogeneous small perturbation
of the asymptotic solution (n, p,w), numerically obtained
for each set of parameters. That is, ni, j,0 = n(1+ 0,1 ξ 1

i, j);
pi, j,0 = p(1+ 0,1 ξ 2

i, j); wi, j,0 = w(1+ 0,1 ξ 3
i, j), where ξ 1,

ξ 2, ξ 3 ∈ [−1,1] are randomly chosen according to the
uniform distribution. For dynamical parameters for which
the equilibrium is stable, the initial distribution corresponds
to a small perturbation of the equilibrium in each site. On
the other hand, for parameters promoting oscillating cycles
(p−cycles or limit cycles), the initial value in each site
corresponds to a perturbation of a solution value.

The classical Turing type patterns appearing in predator-
prey systems occur for dynamical parameters for which the
local equilibrium is stable. Moreover, movement parameters
of prey and predators must be different (Edelstein-Keshet,
1988). In discrete models, heterogeneous patterns in
predator prey models have been found from perturbations
of the stable equilibrium along with discrepant movement
parameters for prey and predators (Rodrigues et al., 2011).
Heterogeneous spatial distributions for predator and prey
have also been found close to Neimark-Sacker bifurcations
(Rodrigrues et al., 2011). Since we do not have an analytical
criterion for pattern formation with three species in discrete
models, we consider the dynamics in different regions of the
dynamical parameters space and the movement parameters
with different magnitude for the three species.

We present the spatial distribution of the species trough
density plots in which the dark (light) gray tones indicate
high (low) densities. We also show graphs of the total
density of each species over time.

In a first numerical experiment, we consider dynamical pa-
rameters for which the local coexistence of the three species
is stable, that is, µ1 = 2, µ2 = 1.94, α1 = 1.0764, α2 = 1.8
and λ = 2. Furthermore, movement parameters for each
species were taken as βn = 0.91, βp = 0.01 and βw = 0.01.
The Figure 4 illustrates heterogeneous spatial distribution of
the resource (a), parasitoids (b) and predators (c) at time-step
t = 600. The pattern obtained also depend on the initial per-
turbation of the species however, the type of pattern is related
to the parameters. Figure 5 shows that the total population
remains constant over time.

In order to investigate the effects of the movement parame-
ters on the spatio-temporal dynamics, we fixed the dynamical
parameters as those in Figure 4 and simulate the equations for
different values of βx. Heterogeneous patterns were obtained
when both consumers move at low rates. We obtained homo-
geneous distributions of the species when at least one of the
consumers move at high rate (see Table 1).

Figure 6 shows the spatial distribution of the resource
species for µ1 = 4.5, µ2 = 1.94, α1 = 1.0764, α2 = 1.8

doi: 10.58560/rmmsb.v03.n02.023.02
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(a) (b) (c)

Figure 4: Spatial distribution of: (a) resource species, (b)
parasitoids (c) predators, at t = 600, for µ1 = 2, µ2 = 1.94,
α1 = 1.0764, α2 = 1.8, λ = 2, βn = 0.91, βp = 0.01 and

βw = 0.01.

Figure 5: Total populations of the resource species (solid black
curve), the parasitoids (dashed curve) and predators (gray curve).
The parameters are: µ1 = 2, µ2 = 1.94, α1 = 1.0764, α2 = 1.8,

λ = 2, βn = 0.91, βp = 0.01 and βw = 0.01.

Table 1: Spatial distribution for different values of β , with
µ1 = 2, µ2 = 1.94, α1 = 1.0764, α2 = 1.8 and λ = 2.

Values of β Spatial distribution
βn = 0.01; βp = 0.91; βw = 0.01 Homogeneous
βn = 0.01; βp = 0.01; βw = 0.91 Homogeneous
βn = 0.91; βp = 0.91; βw = 0.01 Homogeneous
βn = 0.01; βp = 0.91; βw = 0.91 Homogeneous

and λ = 2, and different values of the movement parame-
ters. For this set of dynamical parameters, the resource and
parasitoids species oscillate while the predator species goes
extinct in the local dynamics. The spatio-temporal dynam-
ics of the CML, on the other hand, depends on the move-
ment parameters. However, the predator species did not
persist for any of the movement rate used in our simula-
tions. The resource and parasitoid spatial distributions ex-
hibited either homogeneous or heterogeneous distributions.
Homogeneous distributions were obtained when resource
species and parasitoid movement rate were close to each
other (for example: βn = 0.01; βp = 0.01; βw = 0.9; and
βn = 0.91; βp = 0.98; βw = 0.01, which are not illustrated
here for the sake of brevity). On the other hand, when their
movement rate were significantly different, heterogeneous
distributions were observed (Fig. 6). Since the parasitoid
spatial distribution is very similar to the resource one, Fig-
ure 6 only presents the spatial distribution of the resource
species. Figure 7 illustrates the corresponding total popula-
tion of the resource species (black continuous curve) and par-
asitoids (dashed curve). We can observe that the amplitude

(a) (b)

(c) (d)

Figure 6: Spatial distribution of the resource species at t = 600, for
dynamical parameters µ1 = 4.5, µ2 = 1.94, α1 = 1.0764, α2 = 1.8

and λ = 2 and different sets of the movement parameter β :
(a) βn = 0.91; βp = 0.01; βw = 0.01;
(b) βn = 0.01; βp = 0.98; βw = 0.01;
(c) βn = 0.91; βp = 0.01; βw = 0.9;
(e) βn = 0.01; βp = 0.98; βw = 0.9;

of population oscillations depends on the movement param-
eters. It is worth noting that Figure 7(e) and (f) correspond
to oscillations with homogeneous spatial distributions (spa-
tial distributions are not illustrated in Fig. 6). That is, the
populations oscillate in time with the same density in all the
sites of the habitat.

We now perform the simulation with parameters for which
the local dynamics shows p−cycles of the resource and
the predator populations while the parasitoid goes extinct:
α1 = 1.0764, α2 = 1.8, µ1 = 1.84, µ2 = 5.7 and λ = 2. The
results of spatial model with this set of parameters depend
on the species movement rate. Figure 8 shows the resource
heterogeneous spatial distributions for different values of βx
(x = n, p,w). The predator distribution in space follows the
resource one while the parasitoid goes extinct as it occurs in
the local dynamics. The total population oscillates with am-
plitude dependent on the movement parameters (Figure 9).
Oscillations with the species homogeneously distributed in
space were obtained for movement parameters:

• βn = 0.91;βp = 0.01;βw = 0.9;,

• βn = 0.01;βp = 0.01;βw = 0.9; and

• βn = 0.01;βp = 0.98;βw = 0.9.

Figure 9 shows the total population for these parameters;
however the corresponding spatial homogeneous distribution
are not illustrated in the Figure 8.

We finally simulated the system with parameters for which
all the three species persist oscillating when space is not con-
sidered: µ1 = 1.84, µ2 = 1.94, α1 = 1.0764, α2 = 4 and
λ = 2. The results of the CML model simulations reveal
that, depending on the species movement parameters, either

doi: 10.58560/rmmsb.v03.n02.023.02
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(a) (b)

(c) (d)

(e) ( f )

Figure 7: Total populations of the resource species (continuous
black curve), parasitoid (dashed curve) and predator species (gray
curve) for µ1 = 4.5, µ2 = 1.94, α1 = 1.0764, α2 = 1.8 and λ = 2

and different sets for the movement parameters β :
(a) βn = 0.91; βp = 0.01; βw = 0.01;
(b) βn = 0.01; βp = 0.98; βw = 0.01;
(c) βn = 0.91; βp = 0.01; βw = 0.9;
(d) βn = 0.01; βp = 0.98; βw = 0.9;
(e) βn = 0.01; βp = 0.01; βw = 0.9;
(f) βn = 0.91; βp = 0.98; βw = 0.01.

(a) (b) (c)

Figure 8: Spatial distribution of resource species at t = 600 for
µ1 = 1.84, µ2 = 5.7, α1 = 1.0764, α2 = 1.8 and λ = 2 and

different sets of values for β :
(a) βn = 0.91; βp = 0.01; βw = 0.01;
(b) βn = 0.91; βp = 0.98; βw = 0.01;
(c) βn = 0.01; βp = 0.98; βw = 0.01;

(a) (b)

(c) (d)

(e) ( f )

Figure 9: Total populations of the resource species (continuous
black curve), the parasitoid species (dashed curve) and the predator
species (gray curve) for µ1 = 1.8, µ2 = 5.7, α1 = 1.0764, α2 = 1.8

and λ = 2, and different sets of values for β :
(a) βn = 0.91; βp = 0.01; βw = 0.01;
(b) βn = 0.91; βp = 0.98; βw = 0.01;
(c) βn = 0.01; βp = 0.98; βw = 0.01;
(d) βn = 0.91; βp = 0.01; βw = 0.9;
(e) βn = 0.01; βp = 0.01; βw = 0.9;
(f) βn = 0.01; βp = 0.98; βw = 0.9.
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(a) (b)

Figure 10: Spatial distribution of resource species at t = 600 for
µ1 = 1.84, µ2 = 1.94, α1 = 1.0764, α2 = 4 and λ = 2 for the

different sets of values of β :
(a) βn = 0.91; βp = 0.01; βw = 0.01;
(b) βn = 0.01; βp = 0.01; βw = 0.9.

heterogeneous (see Figure 10) or homogeneous distributions
can be obtained. The total populations also oscillate with
great amplitude when the distribution is homogeneous (Fig.
11(e) and (f)).

4 CONCLUSIONS

We proposed a CML model for three interacting species in
order to analyse the spatio-temporal dynamics of a resource
species consumed by two natural enemies: a parasitoid and
a predator. The resource species grows according to the
Beverton-Holt dynamics while it is consumed through the
Holling type III functional response by the two enemies that,
implicitly compete exploiting the same resource.

Unfortunately the complexity of the equations for the
local dynamics does not allow analytical results. However,
through numerical simulations we observed that the local
dynamics exhibit coexistence of the three species, which can
be either stable or oscillating; coexistence of the resource
species and one of the consumers, that is, depending on
the parameters, either the parasitoid or the predator can go
extinct; extinction of both the consumers and persistence of
the resource only.

In the results obtained in our simulations, the movement
of the species did not change the local forecast of extinction.
That is, when the local dynamics results in the extinction of
one the species, the CML model also lead to the extinction of
this species regardless its movement rate. It is important to
emphasize that this conclusion is limited to the simulations
carried out, the extinction forecast of the local model
can be changed for other combinations of the parameters.
Oscillating local dynamics also oscillates with space with
amplitude dependent on the movement parameters.

If from one hand side, the movement parameters do not
change the dynamics, on the other hand side, they determine
the spatial distribution of the species, whether heterogeneous
or homogeneous. Heterogeneous distributions require
discrepancy between the species movement rate. However,

(a) (b)

(c) (d)

(e) ( f )

Figure 11: Total populations of the resource species (continuous
black curve), the parasitoid species (dashed curve) and the predator
species (gray curve) for µ1 = 1.8, µ2 = 1.94, α1 = 1.0764, α2 = 4

and λ = 2, and different sets of values for β :
(a) βn = 0.91; βp = 0.01; βw = 0.01;
(b) βn = 0.01; βp = 0.01; βw = 0.9;
(c) βn = 0.91; βp = 0.01; βw = 0.9;
(d) βn = 0.01; βp = 0.98; βw = 0.01;
(e) βn = 0.01; βp = 0.98; βw = 0.9;
(f) βn = 0.91; βp = 0.98; βw = 0.01.
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this is not enough and there is no straightforward relation
between the parameters to guarantee the existence of
heterogeneous patterns. A criterion for pattern formation
induced by diffusion in discrete models can be found for two
interacting species (see Rodrigues et al. (2011)); however,
we do not know, to the best of our knowledge, a similar
criterion for three interacting species.

From the ecological point of view, our results suggest
that it is necessary to take care with the introduction of two
species for the biological control of a pest species since one
of the consumers can lead the other to extinction, unless they
have similar performance in terms of effectiveness of the re-
source consumption. The advantages of two natural enemies
in biological pest control then demand more investigation
and the study of more specific situation are recommended.
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