TITULO: ESTUDIOS BÁSICOS DE MATRÍCERIA

SEMINARIO PARA CIIAR AL EJE DE DIBUJANTE PROYECTISTA

ALUMNO:
FERNANDO TRUCHILLIO LAVÍN

PROFESOR GUIA:
MARIO VEGA

SANTIAGO - CHILE
TITULO: ESTUDIOS BASICOS DE MATRICERIA

SEMINARIO PARA OPTAR AL TITULO DE DIBUJANTE PROYECTISTA.

ALUMNO: FERNANDO TRUJILLO LAVIN
PROFESOR GUIA: MARIO VEGA

SANTIAGO - CHILE
DEDICATORIAS

Este seminario está dedicado a mis padres Mirtha y Fernando, quienes con mucho esfuerzo y voluntad forjaron mi formación personal.

FERNANDO (JR).
A la familia Mendoza Andrade,
de quienes recibí un constante
apoyo y una gran disposición de
ayuda, en especial de Alvaro y
Paula “mi polola”
A todos gracias.

FERNANDO
AGRADECIMIENTOS

Agradezco afectuosamente a todas las personas que estuvieron involucradas de una u otra forma en la realización de este trabajo, aportando grano a grano los conocimientos necesarios que hoy están impresos en este seminario.

GRACIAS
SUMARIO

I. DESTINO SEMINARIO

Este seminario, está enfocado como material de apoyo al sector estudiantil; como al sector pasivo, refiriéndonos aquellos que poseen una visión técnica no muy desarrollada, en el área de matrícula y sus respectivas derivaciones.

II. VIA A UTILIZAR

La vía de enseñanza al alumnado, estará constituida por dos métodos con el mismo material, uno es un informe escrito con apoyo de imágenes en color, y otro, a través de proyecciones de diapositivas (formato 5x5), con el objetivo de ir explicando y definando los diferentes cuadros proyectados alusivo al tema. La clase puede ser impartida, en cualquier recinto que cumpla con las condiciones mínimas para ello:

- Una sala que pueda oscurecerse.
- Una proyectora de diapositivas.

*NOTA: La cantidad de 65 diapositivas, permanecerán a cargo de la coordinación académica correspondiente como material de apoyo al curso de matrícula.

III. DISTRIBUCION DE LA MATERIA

El material esta formado por VIII Capítulos; éstos se encuentran divididos en dos secciones, las cuales serán explicadas a continuación.

La primera parte; consta de VII Capítulos, los cuales explicaran de manera muy sencilla los conocimientos básicos necesarios para entender y enfocar el lenguaje mecánico indispensables, para formar un criterio técnico amplio, para que sin problemas formen sus ideas sin salir del marco real, en la construcción de mecánica o matrices.

La segunda parte; estará destinada a presentar concretamente, las diversas alternativas y formas de matrices más comunes que podemos encontrar en el mundo mecánico. La variedad de ejemplos visuales que podrán ser adquiridos en este material, ayudarán al estudiante a enriquecer su formación técnica y estructurar la idea del proceso constructivo, que es muy importante para la etapa de diseño.
ÍNDICE GENERAL

Introducción.. 1

PRIMERA PARTE

CAPÍTULO PRIMERO

1. Breve historia de los metales.. 2
 1.1. El hombre desde sus inicios.. 2
 1.2. Revolución industrial... 2
 1.3. Hornos siderúrgicos.. 3
 1.4. Tratamientos térmicos.. 4
 1.5. Aleaciones de Acero.. 5
 1.6. Exigencias del hombre... 5

CAPÍTULO SEGUNDO

2. Introducción a la matricería.. 6
 2.1. A la par con el mundo.. 6
 2.2. Oficinas técnicas.. 6
 2.3. Necesidades de crear productos.. 7
 2.4. Matriz: definición general.. 7
 2.5. Esquema de matrices más comunes... 8

CAPÍTULO TERCERO

3. Prensas.. 9
 3.1. Definición general... 9
 3.2. Tonelaje.. 10
 3.3. Altura... 11
 3.4. Ubicación de la matriz.. 12

CAPÍTULO CUARTO

4. Tipos de prensas (definición).. 13
 4.1. Prensas mecánicas... 13
 4.2. Prensas hidráulicas.. 17
 4.3. Prensas automáticas... 18

CAPÍTULO QUINTO

5. Inyectora.. 19
 5.1. Definición general.. 19
 5.2. Máquinas inteligentes... 20
 5.3. Proceso de inyección en la matriz.. 21
CAPÍTULO SEXTO

6. Maquinas y herramientas
 6.1. Introducción
 6.2. Definición general
 6.3. Maquinas y herramientas más usadas en la construcción
 6.4. Electroerosión
 6.5. Terminología de la Electroerosión

CÁPITULO SEPTIMO

7. Tratamiento térmico de los metales
 7.1. El Acero
 7.2. Descripción de los tratamientos térmicos de los Aceros de mayor uso en matrícula

SEGUNDA PARTE

CAPÍTULO OCTAVO

8. Matricería (definición general)
 8.1. Cinco factores para el diseño de matrices
 8.2. Esquema
 8.3. Trabajo en frío
 8.3.1. Matrices de doblado
 8.3.2. Matrices de corte
 8.3.3. Matrices para embutir
 8.4. Matrices en caliente
 8.4.1. Matrices de forjado
 8.4.2. Matrices de soplado
 8.4.3. Matrices de inyección para polímeros

CONCLUSIÓN

BIBLIOGRAFÍA
INTRODUCCION

El proceso de diseño en la metal mecánica se encuentra respaldado en sí, por una notable cantidad de conocimientos teóricos y prácticos. La mayor parte de este proceso de conocimientos se adquiere en la práctica, debido a que proporciona las interrogantes necesarias en el proceso constructivo, al contar con las innumerables posibilidades de formas o materiales a utilizar, para una determinada máquina o un producto específico.

En lo que se refiere al material teórico existente en el mercado, sin desmerecer su aporte, está dirigido en su gran mayoría al sector activo, es decir, a los que ya poseen una amplia formación técnica mecánica. Aunque existen excelentes textos modernos referentes al tema, es difícil encontrar programas destinados al sector pasivo, al sector estudiantil, aquellos quienes carecen de una formación y un lenguaje técnico.

Este seminario está estrechamente destinado a aquellos que inicián su formación técnica y mecánica, esencialmente en la matricería.

El material se presenta con el título de CONOCIMIENTOS BASICOS DE MATRICERIA, debido a que su información de matricería no es un aporte directo al tema sino que es una herramienta que facilita la entrada al mundo de la matricería.

El material que se expone en este seminario, está compuesto por imágenes a color, las cuales entregará una valiosa información gráfica, necesaria para que el estudiante logre formar un amplio criterio constructivo en matricería y en las máquinas y herramientas.

Para el estudio del texto, conviene seguir el orden de exposición y en una primera lectura leer cada sección o capítulo, de manera que el estudio sea realmente provechoso.
1. BREVE HISTORIA DE LOS METALES

1.1 EL HOMBRE DESDE SUS INICIOS

El hombre desde sus inicios, ha estado acompañado de los metales, tales como el cobre y el hierro; Utilizados para la fabricación de armas y adornos, para este último, encontramos el oro, el mercurio, la plata y el plomo.
1.2 REVOLUCION INDUSTRIAL

La revolución industrial que tuvo lugar en Gran Bretaña a finales del siglo XVIII, repercutió notablemente en el campo de la metalurgia. Empezó a obtenerse el acero fundido, valiéndose del Crisol y al quemar parte del carbono existente en el hierro colado, se llegó a la producción de hierro dulce o acero.

1.3 HORNOS SIDERURGICOS

En el siglo XIX, se perfeccionaron todos estos procedimientos y aparecieron otros nuevos, empleados aún en la siderurgia actual; como el horno Martin Siemens, el convertidor, hornos eléctricos, electrólisis del Aluminio, etc.
1.4 TRATAMIENTOS TERMICOS

Los estudios del físico francés Reaumur (1683-1757), junto a los de otros investigadores, condujeron al mejor conocimiento de la metalografía, y la aplicación del tratamiento térmico.

FOTO: Hombre midiendo temperatura (con pirómetro) a piezas de gran envergadura.
1.5 ALEACIONES DE ACERO

También la obtención de aleaciones de gran importancia industrial, gracias, en algunos casos, al descubrimiento de nuevos metales, como el Cromo, Níquel, y el Wolframio.

1.6 EXIGENCIAS DEL HOMBRE

Se puede decir que los metales, han ido evolucionando de acuerdo a las necesidades y exigencias que el hombre, a través del tiempo les ha requerido.

FOTO: Control de calidad, midiendo la dureza del acero en una pieza mecánica.
CAPITULO SEGUNDO

2. INTRODUCCION A LA MATRICERIA

2.1 A LA PAR CON EL MUNDO

Debido a la necesidad de ir a la par con el mundo, los industriales apoyaron ingeniosamente, el negocio de invertir en maquinarias, duplicando tanto su producción, como sus ventas.

2.2 OFICINAS TECNICAS

Por lo mismo se crearon oficinas técnicas, especializadas, con sus correspondientes departamentos de ejecución, estos últimos son los encargados de la realización práctica de los proyectos.
2.3 NECESIDADES DE CREAR PRODUCTOS

Para la fabricación de ciertos productos o piezas, cualquiera fuese el orden y el material, necesariamente fueron creados moldes de acero para la producción en serie del producto deseado de diferentes características de acuerdo a la pieza a elaborar. Estos moldes reciben un nombre denominativo que los generaliza, su nombre es MATRIZ.

2.4 MATRIZ: DEFINICION GENERAL

Se define con el nombre de matriz, a un conjunto de piezas mecánicas que operan mediante herramientas especiales, aptas para el corte o para dar forma deseada.

Se puede decir, que sometemos una chapa plana o fleje a una o más transformaciones con el fin de obtener una pieza poseyendo forma geométrica propia, sea esta plana o hueca. En otros términos la chapa es sometida a una elaboración plástica obteniendo el resultado deseado.

Como ejemplo, vemos esta matriz de corte, que desarrolla una manilla de balón de gas, como una de las innumerables piezas requeridas por la sociedad consumista. Es importante acotar, que una matriz en su forma constructiva, se compone de dos cuerpos; uno fijo y otro móvil.
2.5 **ESQUEMA DE MATRICES MAS COMUNES**

La inmensa gama de matrices se puede separar y dividir en dos grandes grupos: Las matrices que trabajan en frío y las que trabajan en caliente. Estas a su vez, por cada grupo se subdividen en diferentes formas de trabajo.

```
MATRIZ
  /   \
/     \\     \\
EN FRIO DOBLADO
      /   \
      \   \
      \FORJA
      /   \
  CORTE \\   \\
      EMBUTIDO

EN CALIENTE EXTRUSION SOPRADO
     /       \
     \       \
     INYECCION DE POLIMEROS
```

Pero las matrices como elemento principal de trabajo, no funcionan por sí solas. Para ello es necesario conocer las máquinas con las cuales trabajan, como: prensas e inyectoras.
CAPITULO TERCERO

3. PRENSAS

3.1 DEFINICION GENERAL

Son máquinas de fabricación robusta, destinadas exclusivamente al trabajo productivo con matrices de alto rendimiento. Su función mecánica, es ejercer presión en la matriz por medio de un robusto carro central llamado cabezal, que se desliza, a través, de guías, que aseguran un trabajo preciso y uniforme, para fabricar la pieza que la matriz elabora.
FOTO: Prensa Hidráulica, de dos montantes y de 300 toneladas de presión.

3.2 **TONELAJE**

Las prensas se pueden diferenciar, aparte del diseño de la máquina, en su esfuerzo de trabajo, es decir, la capacidad de presión (en toneladas), que posee la prensa. Esta presión la desarrolla a través del cabezal que baja con topes que la regulan lo suficiente para que la matriz pueda desarrollar la pieza a elaborar, ya sea de corte, doblado, embutido, etc.

Entonces podemos decir, que las prensas las podemos diferenciar por su diseño y por su tonelaje, que fluctúa entre 1 y 800 toneladas aproximadamente.
3.3 ALTURA

Su forma constructiva (diseño), está estudiada para las innumerables alternativas de matrices que ofrece el mercado, ya sea en forma, como en peso, dimensiones o posiciones de trabajo. Sus dimensiones, muy vinculadas con su tonelaje, las podemos encontrar desde 1,5 a 10 ó 12 metros de altura aproximadamente.
3.4 UBICACION DE MATRIZ

La ubicación de la matriz en la prensa, es en la mesa de fijación de ésta. Como ya sabemos la matriz está compuesta de dos partes; una base superior y otra base inferior.

La parte inferior es la que se amarra con bridas en la mesa de la prensa, fijándola fuertemente para evitar que se mueva cuando trabaje.

La parte superior de la matriz, se amarra en el carro central de la prensa (cabezal), a través de una unión llamada “Espiga ó Toma”. La espiga es un vástago que sobresale de la matriz y está ubicada en el centro de gravedad de ésta.

La gran precaución en el montaje de ésta, es que todo quede bien fijado y que las partes de la matriz, estén coincidiendo en su centro, para obtener la pieza en excelentes condiciones.

A continuación detallaremos algunos tipos de prensas e inyectoras de mayor uso en las empresas del rubro Metalmecánica.
4.1.1 DE TORNILLO (BALANCIN)

Son accionadas manualmente por medio de una palanca, o por un volante. Generalmente son utilizadas para los ensayos en la construcción de matrices y no se recomienda para la producción en serie de piezas.
4.1.2 DE TORNILLO (CON DISCO DE FRICCIÓN)

Estas prensas son accionadas por un motor, que transmite a través de dos discos, movimientos alternativos e intermitentes al cabezal a voluntad del operador. Es decir, al accionar la prensa se presiona uno de los discos superiores "eje vertical", que están girando en su eje constantemente contra el volante central (horizontal) y le transmite el movimiento de bajada al cabezal, para efectuar la operación. Luego el primer disco se retira, dando paso al otro disco (vertical) que se presiona para dar el movimiento de subida, dichos movimientos son controlados por topes regulables. Son recomendables en trabajos con matrices de acuñado y estampado en caliente.
4.1.3 PRENSA EXCENTRICA RIGIDA

Son las de uso general en la mayoría de las industrias, ya que se adaptan a la mayoría de los trabajos de matricería. Presentan dificultades para la embutición profunda. Funcionan a través de un volante que acumula una cantidad de energía que cede en el momento que la pieza a cortar, doblar o embutir, la que opone resistencia al movimiento.

En el eje del volante hay una excéntrica que funciona por medio de una biela, dándole movimiento alternativo al carro central o cabezal.
4.1.4 PRENSA EXCENTRICA INCLINABLE

Este tipo de prensa, mecánicamente muy similar a la anterior, se utilizan por lo general en matrices de doble efecto, y su mesa dispone de un disco central con acción de muelle (resorte), permitiendo el funcionamiento del expulsor adaptado en la matriz. El ángulo de inclinación de la prensa varía de 25° a 30°, para permitir una buena visión de la matriz al operador y facilitar la salida de las piezas en combinación con un poco de aire comprimido que las dirige a una canal de evacuación que la matriz posee para luego caer al recipiente que las almacena.
4.2 PRENSAS HIDRAULICAS

Son las que tienen sus movimientos dirigidos por presión de aceite, utilizados generalmente para estampas de grandes dimensiones. La bomba de émolo rotativa de alimentación variable, presenta las características de conferir al curso de la prensa en velocidad máxima cuando la presión es mínima; por lo tanto tenemos que el carro central o cabezal de la prensa descende rápidamente sin ejercer presión, iniciándose enseguida el estampado de la chapa, previamente colocada sobre el conjunto inferior de la matriz, la velocidad disminuye y rápidamente desarrolla ó da toda la presión requerida para la ejecución del estampado. Terminada la acción, el carro central retorna a la parte superior a gran velocidad ya que la única fuerza necesaria es para el peso de éste. Es evidente que por este motivo la bomba ofrece medios capaces de conferir al curso del carro central varias velocidades en función de la presión necesaria. Esta puede ser de simple, doble o triple efecto.
4.3 PRENSAS AUTOMÁTICAS

Son máquinas modernas que en ocasiones sustituyen a las prensas excéntricas, por las ventajas que proporcionan tales como:

a.- Son compactas debido a la distribución de sus elementos.

b.- Generalmente son equipadas con alimentadores automáticos, guías regulables para la tira y dispositivos para recortar el retal. (retal ver pág. 60)

c.- La mesa está dispuesta de modo que ofrece una buena visión para colocar y retirar las matrices.

d.- Permite duplicar o triplicar la producción, en razón de la alta velocidad con que trabaja.

e.- Las matrices para este tipo de prensas son guiadas por 4 ó más columnas que impiden totalmente inclinaciones, juegos o desvíos que normalmente ocurren en las prensas excéntricas.

f.- Estas máquinas fueron proyectadas para trabajar generalmente con matrices para piezas pequeñas, como las empleadas en la construcción de máquinas de escribir, radios, relojes y otras. Estas prensas completadas por dispositivos de alimentación automática permiten efectuar trabajos de corte y embutición de poca profundidad, a un ritmo de producción de 500 a 700 golpes por minuto.
CAPITULO QUINTO

5 INYECTORA

5.1 DEFINICION GENERAL

Las máquinas inyectoras de plástico en su mayoría bastante inteligentes, satisfacen en forma muy segura, las necesidades de producción de cualquier empresa. Aunque no es una máquina veloz comparada con las prensas mecánicas, ofrece múltiples garantías en su complejo proceso de trabajo, como homogeneizar el pellets (polímeros) deseados como: Policloruro de Polivinilo (PVC), Polipropileno (P.P.), Poliestireno (P.S.), Poliuretano (P.U.R.), etc.

Las inyectoras permiten alojar moldes (matrices) en su zona de trabajo, para proceder a su función característica, tal como su nombre lo indica, inyectar el polímero en estado líquido en el molde llenando sus cavidades y obtener el producto deseado.
5.2 MAQUINAS INTELIGENTES

Se les denomina inteligentes, debido a que poseen bastantes sensores, como indicadores de calidad como: termómetros, manómetros, indicadores de materia prima, sensores de temperatura ideal para cada polímero a usar, sensores de seguridad para el operador, en las puertas y en el cierre por cada inyección, circuitos de agua canalizados a través de válvulas y cañerías, que permiten enfriar el polímero inyectado en la matriz produciéndose la plastificación (solidificación), antes de ser expulsados por los botadores de la matriz. Estas son algunas de las variadas funciones que presenta esta máquina, consolidada y confiable para la producción en serie a nivel industrial.

La frecuencia de trabajo de las máquinas inyectoras, es de aproximadamente 2 a 5 inyecciones por minuto, dependiendo de la envergadura de la pieza a inyectar.
5.3 PROCESO DE INYECCION EN LA MATRIZ

A continuación explicaremos en tres grandes pasos, las fases de trabajo de la máquina inyectora de plástico.

5.3.1 PRIMER PASO

Se carga la tolva con el pellets del polímero a usar, luego al caer éste al cilindro inyector, los calefactores no demoran en derretirlo y prácticamente es dejado en estado líquido, a fin de que fluya sin problemas en el momento de su inyección.

Enseguida, el tornillo sin fin, gira a una determinada velocidad, obligando a desplazar violentamente el polímero al extremo del cilindro, que solo tiene como salida una boquilla con una perforación pequeña, no más de 4 a 5 mm. de diámetro. Esta perforación coincide con el de la matriz, permitiendo así el enlace para que la matriz reciba la inyección del polímero y llenar la o las cavidades de la matriz y así obtener la pieza deseada.

Como ejemplo aclaratorio del funcionamiento de la máquina inyectora, damos el de la jeringa con líquido en su interior por su cercana similitud.
5.3.2 **SEGUNDO PASO**

La matriz antes de recibir la inyección de plástico, ya se encuentra cerrada, a una presión suficiente que no permita la fuga del polímero inyectado. Una vez inyectado el material se mantiene así por unos segundos, para permitir que la pieza solidifique, esto se debe en gran medida a una red de agua en el interior de la matriz que bordea la cavidad del molde.

![Diagrama del segundo paso](image)

5.3.3 **TERCER PASO**

Como última fase y una de las más cortas, consiste en desacoplar la pieza del molde, a través de botadores que la matriz posee, éstos atacan a la pieza en lugares estratégicos, generalmente en lugares donde a simple vista no sean encontrados, es muy común que los botadores con el tiempo no disimulen sus marcas.

Así de esta forma, las máquinas inyectoras junto con los moldes (matrices) forman un grupo de bastante cotización en el mercado de hoy, debido a las innumerables cantidades de piezas que es posible fabricar.

![Diagrama del tercer paso](image)
CAPITULO SEXTO

6 MAQUINAS Y HERRAMIENTAS

6.1 INTRODUCCION

Antes de definir la inmensa gama de matrices como tema principal de esta memoria, es conveniente conocer la gran cantidad de máquinas que labran los metales, es decir, dan forma geométrica a una pieza de acero destinada a un uso determinado, generalmente piezas mecánicas.

Estas máquinas se desvuelven muy bien en las, áreas de minería, mantención de máquinas industriales, mecánica, matricería, etc.

6.2 DEFINICION GENERAL

Son máquinas de gran precisión, que tienen como principal característica elaborar o trabajar los aceros dando innumerables formas, ya sean cilíndricas, rectas y angulares, como también diferentes calidades superficiales, tales como devastado, alisado, rectificado, lapeado.

Verdaderamente son eficientes artesanos modernos, que facilitan la rápida elaboración del diseño de la pieza que se desea fabricar.

Hoy en día, las máquinas y herramientas, actúan con tal precisión, que un conjunto ensamblado de piezas, se puede fabricar por separado en forma paralela con la seguridad que en el momento de ensamblar el conjunto, todas las piezas coincidan, todo muy unido a los datos en los planos hechos por los proyectistas.

De este modo, se ahorra bastante tiempo en la construcción de conjuntos mecánicos.
6.3 MAQUINAS Y HERRAMIENTAS MAS USADAS EN LA CONSTRUCCION DE MATRICES

TORNO UNIVERSAL TORMAX 20/20A
PARA MANTENIMIENTO, PRODUCCION, MATRICERIA Y ESCUELAS PROFESIONALES

6.3.1 TORNO

El torno es una de las máquinas más usadas en la metalmecánica. Su mayor característica es que permite dar innumerables formas cilíndricas, usando como criterio general, una herramienta cortante y la pieza de acero en revolución. Las variadas gamas de formas y figuras que se pueden desarrollar en esta máquina son las siguientes: figuras cónicas exteriores e interiores, figuras cilíndricas rectas, figuras huecas (perforadas), roscas; izquierda, derecha, externas e internas, etc. Además se pueden conseguir diferentes calidades superficiales, según sea el caso.

Existen varios tipos de tornos, que, según sus diferentes características, reciben diferentes denominaciones como: paralelos, revolver, automáticos, copiadores y verticales.

El torno de la fotografía es un torno paralelo, es el más usado de todos, consta de una bancada, provista de guías paralelas rectificadas, por las cuales se desliza el cabezal móvil (contrapunta extremo derecho), destinado a sujetar la pieza adaptándose muy bien al largo de ésta al tornear.

En el otro extremo (lado izquierdo) encontramos el cabezal fijo, el cual posee un plato universal con mordazas que tienen como función tomar la pieza, para cuando ésta gire y no se suelte.

También encontramos el carro móvil central, este se desliza casi por completo por las guías de la bancada éste se puede desplazar manual o automáticamente.

Sobre este carro central encontramos dos carros cortos, uno en sentido longitudinal y otro transversal, este último tiene dos alternativas de uso manual y automáticamente y por último sobre estos carros, encontramos el portaherramientas, tiene como función sujetar rígidamente las herramientas en el momento de arrancar viruta.
En esta foto, se puede apreciar el momento en que la herramienta arranca viruta a una pieza en revolución.

Se puede agregar que las piezas, cuando son cortas no es necesario que el cabezal móvil las sujete.

Es frecuente usar en máquinas que desprenden material, un líquido refrigerante, como su nombre lo indica, permite reducir las altas temperaturas producto del roce entre la pieza y la herramienta de corte, este líquido se llama aceite soluble.
En esta vista, se puede distinguir una pieza larga de acero en revolución, que está siendo exigida por la herramienta de corte. En este caso, por ser un material largo, se debe ocupar la contrapunta o cabezal móvil para permitir que la pieza no se flecte.

Las herramientas de corte suelen tener en la punta (zona de trabajo) una pastilla de un acero especial de muy alta calidad, (carburo de tungsteno), que es la que permite un trabajo parejo y uniforme ya que soporta muy bien el roce y las altas temperaturas sin perder su cualidad de acero.

Las revoluciones que puede dar los tornos van de 20 a 2000 R.P.M.
Algunas piezas de diferentes materiales como semiproducto y producto final.
6.3.2 FRESADORA

La fresadora es una máquina y herramienta, que sirve para alisar las superficies planas, abrir canales o estrias, realizar perfiles complicados y tallar los dientes de engranajes.

Existen tres tipos principales de fresadores: la horizontal y la vertical, según la dirección del eje de rotación y la universal (foto), cuyo cabezal orientable permite labrar la pieza en todos los ángulos. La mayoría de sus movimientos posee dos formas de uso; manual y automático.
El fresado es un procedimiento de elaboración mecánica, mediante la cual una herramienta de corte (fresa), provista de aristas cortantes dispuestas simétricamente alrededor de un eje, gira con movimiento uniforme y arranca el material a la pieza que se empuja contra ella, es decir, cada diente de la fresa, arranca la porción de material (viruta) que le corresponde.
En esta foto, encontramos una fresa de vástago de diámetro 20 mm, labrando un acero que está sujeto por unas mordazas para evitar cualquier movimiento que no esté considerado en la fabricación de ésta.

Es muy importante en el periodo de construcción ocupar toda la información necesaria. Para ello el proyectista asume un compromiso directo en la fabricación de la o las piezas.

Esta imagen muestra tres piezas de acero, la primera; semiproducto; la segunda como producto semielaborado y la tercera como producto terminado. (Proceso de construcción de la fresa).
Debido a la diversidad de formas que es posible dar en los aceros las máquinas fresadoras poseen de igual manera herramientas de corte (fresas), que ayudan a conseguirlas.

FOTO: Algunas de las herramientas más usadas.

6.3.3 RECTIFICADORA

La operación que se realiza con las rectificadoras, se llama rectificado. Estas máquinas permiten afinar superficies de piezas ya labradas, dando a esta última las dimensiones más exactas posibles. El rectificado se consigue a través de muelas de grano fino, cuyas principales características son la rigidez del bastidor, la precisión rigurosa de los movimientos de la muela y de la pieza y la velocidad de giro de la muela, que oscila entre 15.000 y 30.000 revoluciones por minuto. Con esta máquina es posible conseguir un acabado del orden de la centésima a la milésima de milímetro.

Entonces, diremos que el rectificado, tiene por finalidad corregir las irregularidades de carácter geométrico que normalmente se producen durante las operaciones precedentes; operaciones que pueden ser de tratamiento térmico o de máquinas y herramientas.

Las rectificadoras pueden dividirse en:

- Rectificadoras de exterior
- Rectificadoras de interior
- Rectificadoras universales
- Rectificadoras sin centros
- Rectificadoras verticales
- Rectificadoras frontales (planas)
- Rectificadoras especiales

A continuación explicaremos 2 rectificadoras que por lo general son de mayor uso en matrícula y en metalmeccánica.

- Rectificadora universal (cilíndrica)
- Rectificadora horizontal (plana)
6.3.3.1 RECTIFICADORA UNIVERSAL (CILINDRICA)

Por sus excelentes aplicaciones son máquinas usadas también en las fabricaciones en serie. Las rectificadoras universales pueden efectuar las siguientes operaciones

- Rectificado exterior de superficies cilíndricas
- Rectificado exterior de superficies cónicas
- Rectificado interior de superficies cilíndricas
- Rectificado interior de superficies cónicas

En todos los casos la pieza tiene el movimiento principal de rotación (para hacer pasar todos los puntos de la circunferencia bajo la muela) y el movimiento de alimentación o avance (según una traslación longitudinal alternada de ida y vuelta). La muela, en cambio gira velozmente alrededor de su eje en sentido contrario al de la pieza para poder arrancar uniformemente la viruta sobre toda la superficie exterior o interior de la pieza que está girando.

Proceso de rectificado de una pieza cilíndrica recta, estas rectificadoras permiten la alternativa según sea el caso, de tomar la pieza entre centros o incorporar un plato autocentrante (igual que el del torno) para la sujeción de ésta.

Durante el proceso de rectificado, es conveniente como anteriormente habíamos señalado, refrigerar la pieza, para no permitir que las altas temperaturas producto del roce, la dilate y no exista riesgo de rectificar más de lo debido.

32
6.3.3.2 **RECTIFICADORA FRONTAL**

Estas máquinas que rectifican superficies planas, toman esta denominación porque tienen el eje de rotación del husillo portamuela en posición horizontal. Generalmente la superficie de la pieza es mecanizada (rectificada) en fajas paralelas orientadas en el sentido de la mayor dimensión de la pieza, dotada de movimiento longitudinal alternativo.

Por lo general, estas máquinas rectificadoras poseen en su mesa de trabajo un electroimán que sujeta la pieza lo suficiente para poder rectificar su superficie sin temor a que ésta se mueva.

FOTO: Rectificadora plana en proceso de trabajo.

Rectificado de una superficie plana mediante muela de acción periférica.
6.3.4 LIMADORAS

La operación realizada con esta máquina se llama limado; el arranque de viruta se produce mediante la acción de una herramienta monocortante, que se mueve linealmente con movimiento alternativo de vaivén sobre la superficie plana de la pieza.

La herramienta tiene el movimiento principal, mientras la pieza tiene el de alimentación de corte. De este modo la pieza fijada sobre la mesa de la máquina llamada limadora pasa por debajo la herramienta por toda su superficie, a fin de obtener un plano.

Por tener las limadoras una carrera (máximo 500 mm, excepcionalmente 1000 mm) admiten la elaboración de piezas de tamaño medio.

Encontramos dos tipos de limadoras

- Limadoras mecánicas
- Limadoras hidráulicas

Sus funciones son prácticamente idénticas, solo cambia sus sistemas de mandos. A continuación detallaremos los nombres de los componentes de la máquina limadora mecánica, por ser la de mayor uso en la industria metalmecánica.
6.3.6 **TALADRADORAS**

Son máquinas que tienen el fin primordial de realizar agujeros; las taladradoras (o perforadoras) ofrecen la posibilidad de realizar un hueco cilíndrico en una masa metálica, mediante una herramienta de dos filos llamada “broca”. A tal fin, la herramienta es dotada de movimiento giratorio continuo y de movimiento rectilíneo de avance siguiendo el eje de perforación. La viruta, a medida que es arrancada por los dos filos de la herramienta, se arrolla en espiral cilíndrica y se desliza por los dos canales helicoidales de descarga que posee la broca.

Podemos encontrar tres tipos de taladradora comúnmente utilizadas.

- Taladradoras portátiles
- Taladradoras de columna
- Taladradoras radiales

El taladro de columna, uno de los más usados, ofrece mayores alternativas para posicionar piezas de formas irregulares.

Permite perforar aceros con brocas de 1 a 35 ó 40 mm. De diámetro.
Proceso de corte de una broca en una pieza cilíndrica de acero, con su respectivo aceite refrigerante.
FOTO: Taladro "Radial" perfora una placa de acero para una matriz de corte.
6.4 ELECTROEROSIÓN

6.4.1 HISTORIA Y PRINCIPIOS BÁSICOS DE ELECTROEROSIÓN

Las reacciones físico-químicas originadas por el paso de una corriente eléctrica a través de dos superficies metálicas separadas a una distancia genérica X y mantenidas en un recipiente en una solución determinada o al aire libre, ya eran conocidas a inicios del siglo XX. A través de este paso de corriente uno de los siguientes efectos básicos eran observados:
Ocurría una simple remoción de partículas metálicas de una de las superficies o de ambas.

Surgimiento del primer prototipo de electroerosión.

Aproximadamente a mediados del siglo XX (1950) el desgaste de los contactos eléctricos llegó a buscar materiales resistentes a este tipo de desgastes.
Efectuando un trabajo de búsqueda sobre este fenómeno de erosión, y presión por la escasez de diamantes industriales, B. R. e N. Y. Lazarenko, dos sabios soviéticos, se interesan por la posibilidad de explorar la capacidad destructiva de una descarga eléctrica. Iniciaron pesquisas observando el aumento y control de la remoción, para llegar a parámetros satisfactorios y útiles a la industria nacional. Esbozan un proceso de erosionado de metales por etapas, imponiendo una secuencia de ellas entre los dos conductores de corrientes sumergidos en el líquido dieléctrico.

La herramienta (electrodo) y la pieza fueron posicionadas convenientemente dentro de un recipiente (bandeja) para este caso llena con líquido dieléctrico (kerosén), el cual actúa como aislante e intercambiador de calor.

Entre el electrodo y la pieza no había contacto directo. Esta distancia (gap) era controlada por el sistema electrónico de la máquina no pudiendo haber contacto entre ambas, pues originaria un cortocircuito.

Electrodo y pieza fueron conectados a una fuente de corriente continua a través de los terminales, teniendo a disposición un interruptor para abrir o cerrar el circuito. Al cerrar el circuito saltaba una chispa (centella) entre el electrodo y la pieza. Cada chispa producía el calor suficiente para vaporizar una pequeña cantidad de material de la pieza, dejando un pequeño cráter en su superficie.
6.4.2 DEFINICION DE PROCESO

Este proceso se caracteriza que la eliminación de material sea por una sucesión de descargas eléctricas, separadas unas de otras en el tiempo, esto es, solo una descarga a la vez. Por lo tanto este fenómeno es unitario y periódico.

Las descargas entre los electrodos siempre son producidas en un fluido dieléctrico de erosionado. Un proceso de erosionado por electroerosión se caracteriza por dos propiedades básicas:

![Imagen de proceso de erosionado](image)

a.- Su capacidad de erosionar metales o uniones duras resistentes a erosionados convencionales es a través de erosionados cráteres.

Esta propiedad permite el erosionado de matrices y otras piezas de acero templado, carburo de tungsteno, igualmente un erosionado de materiales tenaces o exóticos, tales como los utilizados en aviación.

b.- Capacidad de reproducción automáticas de las formas. Esto se debe al hecho de que una eliminación de material por etapas no exige movimiento relativo entre el electrodo y la pieza, excepto un movimiento de penetración del electrodo, que asegura una continuidad de la eliminación de material. Por tanto, perfectamente posibilita erosionar cualquier forma con la condición de que esta forma sea desmoldable.

41
6.4.3 TIPOS DE ELECTROEROSIÓN

6.4.3.1 POR PENETRACIÓN

Esta categoría engloba todas las operaciones de electroerosión en la cual una velocidad relativa media entre el electrodo y la pieza a trabajar coincide con una velocidad de penetración, es decir; el material adopta la forma que es dada por el electrodo sin contacto físico, bajo una solución dielectrica. Generalmente el electrodo se dimensiona una décima o cinco centésimas más pequeña cuando erosiona diámetros y por el contrario, cuando el electrodo cubre una superficie.

6.4.3.2 POR HILO

En este tipo de equipamiento, está formado normalmente por un electrodo de hilo de Cobre o Latón (pudiendo optar por otros materiales como; Acero, Molibdeno, Tungsteno, Níquel, Cromo, etc.). Este hilo es adaptado a un sistema de carretes, que enrolla una bobina a otra. La escoria del material de hilo es influenciada por el espesor del mismo. El Cobre y el Latón son los más usados de diámetro entre 0.1 y 0.3 mm.
6.5 **TERMINOLOGÍA DE ELECTROEROSIÓN**

En esta sección presentaremos los términos más usados en electroerosión:

a - Arco: Sucesión de descargas estacionarias con efecto destructivo.
b - Contaminación: Polución de la zona de trabajo, proveniente de la erosión.
c - Corriente media de trabajo: Es la corriente medida en perímetro.
d - Cráter: Cavidad producida por una única descarga en una superficie.
e - Cortocircuito: Contacto directo electrodo/pieza (no destructor)
f - Descarga: Paso efectivo de corriente durante un pulso.
g - Descarga anormal: Descarga que precede a un arco.
h - Desionización: Retorno a un estado no conductor, después de la descarga.
i - Dieléctrico: Fluido no conductor donde se produce la electroerosión.
j - 2 “GAP SIDE”: Diferencia entre las dimensiones del electrodo y la pieza.
k - Intensidad; máxima corriente durante una descarga.
l - Succión: Circulación de el dieléctrico en la zona de trabajo, producida por una presión menor que la atmosférica.
m - Tiempo de ionización: Tiempo transcurrido o momento en que la tensión es aplicada entre el electrodo y la pieza y el inicio de la descarga.
CAPITULO SEPTIMO

7 TRATAMIENTO TERMICO DE LOS METALES

7.1 EL ACERO

El acero es el material fundamental en que se basan los profesionales metalúrgicos. La importancia del acero dentro del cuadro industrial se debe a dos factores: su gran resistencia y su inmediata respuesta al tratamiento térmico cuando se necesita un cambio en su dureza o en su estado.

Esencialmente, el acero es una aleación de hierro y carbono. Sin embargo, en cuanto se varían ligeramente las proporciones de estos dos elementos o si se les añade un tercero o un cuarto elemento, se hace posible cambiar de gran manera las características del acero. En cada caso, la adición de otros elementos de aleación o el cambio de las proporciones de los mismos afectan el tratamiento térmico que tiene que emplearse para cambiar el estado del acero.

Es de primordial importancia que el que produce herramientas, como el proyectista y el mecánico de máquinas y herramientas, conozca las capacidades y limitaciones del material con que se está trabajando.
7.2 DESCRIPCION DE LOS TRATAMIENTOS TERMICOS EN LOS ACEROS DE MAYOR USO EN MATRICERIA

7.2.1 TEMPLADO

Es el proceso de calentar el acero hasta la temperatura adecuada, enriándolo después bruscamente sumergiéndolo en agua o aceite. Esto cambia la estructura del acero dándole una condición dura y quebradiza. Para suprimirle tensiones y quitarle algo de esta fragilidad, hay que revenirlo y mejorarlo.

El templado cambia las propiedades físicas del acero. El acero para herramientas de corte usa un porcentaje de carbono más elevado que el acero mecánico corriente o el laminado frío. El carbono es el elemento primordial que hace que el acero se temple o endurezca cuando se le calienta a una temperatura determinada (temperatura normalizada) y se le enfriá bruscamente en agua o aceite. En este proceso, el carbono pasa de su estado austenítico a un estado martensítico.

A continuación nombraremos algunas piezas importantes que van templadas en una matriz:

- Punzones
- Sufrideras
- Topes
- Placas de choque
- Levantadores

7.2.2 REVENIDO

El revenido es siempre el paso posterior del proceso de templado. El acero templado es demasiado quebradizo para poder utilizarlo cuando sale del baño enfriador. Las tensiones y la fragilidad establecidas en el acero por el templado, pueden aliviarse por medio del revenido. En el revenido, el acero se recalienta a temperatura que va desde los 200 a los 320°C y a continuación se le enfriá. Cuando el acero se reviene o mejora por el procedimiento de calor el revenido se determina o se mide por los colores que van apareciendo en la superficie a medida que se va aumentando la temperatura establecida.

Las piezas revenidas de una matriz, prácticamente son las mismas que las del temple, ya que el revenido es un proceso obligado de toda pieza que haya sido templada.

7.2.3 CEMENTACION

El acero se hace de diversas calidades según el tipo de trabajo a que sea destinado. Algunos aceros no contienen tanto carbono como los otros y se les conoce como aceros de bajo porcentaje de carbono. El carbono es el principal elemento endurecedor del acero y se le encontrará en distintas cantidades en las diferentes clases.

Cuando se quiere dar un temple al acero de bajo porcentaje de carbono, se hace necesario añadirle más de éste a la superficie de manera que la misma pueda endurecerse o
templarse. Este proceso es el que se denomina templado superficial o más comúnmente cementación.

La adición de carbono a la superficie por medio de la cementación, cambia la estructura del acero convirtiéndolo de uno que era uniforme en toda su masa a otro construido por una cascara superficial. La superficie cementada que se ha endurecido es la cascara; mientras que la parte interior del acero (el corazón) es blanda. Normalmente, el carbono que se ha añadido al acero queda templado o duro solamente en este grosor o espesor. Este proceso se utiliza para dar una superficie templada o dura a aquellas piezas destinadas a resistir fuertes desgastes.

Las piezas que van cementadas en una matriz son:

- Los cuerpos que llevan figuras (forma y contraforma) en un molde de inyección.
- Algunos tipos de columnas.
- Algunos tipos de bujes.

7.2.4 RECOCIDO

El tratamiento de recocido tiene como objetivo principal, ablandar los aceros generalmente templados, refiniendo su estructura y suprimiendo algunas tensiones internas. En el recocido, el acero se calienta hasta temperatura de templado (rojo cereza mate) dejándolo enfriar muy lentamente, ya sea en el mismo horno o envuelto en un mal conductor de calor, como la cal o amianto de cenizas pulverulentas.

En matrizería generalmente se usa el tratamiento de recocido, cuando hay que maquinar una pieza ya templada, ya sea por error o por un cambio de diseño.

7.2.5 NORMALIZADO

El tratamiento de normalizado consiste en calentar a una temperatura adecuada por sobre tratamiento térmico del templado, seguido posteriormente de un enfriamiento en temperatura ambiente. Su objetivo principal es la recuperación de las estructuras cristalinas, también elimina las irregularidades causadas por los efectos de la forja, la laminación, curvado, mecanizado, etc.

La temperatura de normalización depende esencialmente del porcentaje de carbono en los aceros, aquellos que poseen menos de 0.86% de carbono, su temperatura de normalizado es de 20 a 50°C por sobre la temperatura del acero respectivo.

Es frecuente aplicar este tratamiento en piezas que han sido mecanizadas, causando diferencias de estructura en la superficie por un arranque de viruta generalmente violento, también se da este tratamiento en piezas soldadas, generalmente cuando son de formas complicadas.

En las matrices, las piezas que llevan este tratamiento, por lo general son piezas que han sufrido un trabajo de desbaste en las máquinas y herramientas, como: placas intermedias de una matriz de corte, punzones sufrideras, los bloques de acero que dan forma y contraforma en los moldes de inyección.
En el capítulo segundo se definió, que una matriz es un conjunto armónico de piezas mecanizadas con tal precisión que puedan dar forma a un determinado material. Es decir, un material que cumpla las condiciones para que se le pueda dar forma y obtener la pieza que se desea fabricar. En el caso de la fotografía encontramos una matriz de forja en proceso de fabricación para obtener un cigüeñal.

Las matrices como conjunto general, están destinadas a un mismo propósito, elaborar un producto en serie, a nivel de alta producción, que prácticamente salga desarrollado casi por completo, que sufra la mínima intervención manual o de máquinas, de esta manera se ahorra tiempo y dinero, mejorando notablemente la producción.
Durante el periodo de diseño, es muy normal encontrarse con problemas de formas, espacio, resistencia, que van muy de la mano con la pieza a elaborar. Por ello deben tomarse en cuenta cinco factores de gran importancia, tales como:

a) Fabricar un diseño sencillo, práctico, duradero y rentable.
b) Facilitar el armado y desarmado para su mantención y reparación.
c) Ocupar los acero adecuados con sus respectivos tratamientos térmicos en zonas de alta exigencia.
d) Que el diseño de la matriz garantice la seguridad del operador (prensistas).
e) Ocupar la máxima capacidad de la matriz para fabricar la mayor cantidad posible de piezas.

Considerando estos cinco factores en el diseño de matrices no debería haber problemas en su construcción ni en su rendimiento productivo.
8.2 **ESQUEMA**

A continuación definiremos tipos más comunes de matrices en orden correlativo, según muestra el esquema.

```
MATRICES
   | TRABAJO EN FRIO       |
   | DOBLADO              |
   | CORTE                |
   | EMBUTIDO             |
   | TRABAJO EN CALIENTE  |
   | FORJA                |
   | SOPLADO              |
   | INYECCION DE POLIMEROS |
```

8.3 **TRABAJO EN FRIO**

Este tipo de matrices, reciben esta denominación, debido a que su condición óptima de funcionamiento o de trabajo es a una temperatura ambiente que promedia los 21°C, al igual que todas la máquinas y herramientas e instrumentos de medición (foto: pie de metros).

Es importante aclarar que en la práctica es muy difícil acclimatar las condiciones de temperatura que una matriz necesita cuando está trabajando, ya que el constante funcionamiento productivo de las máquinas (prensas) más las irregularidades que influyen de la temperatura exterior ayudaría a descompensar la temperatura promedio no excediendo los 30 a 33°C aproximadamente.
8.3.1 **MATRICES DE DOBLADO**

Es la operación más sencilla después de la de corte. En el campo de las instrucciones mecánicas se logran muy buenos resultados cuando se pueden emplear como perfil la chapa doblada; si ésta es de una longitud apreciable, se obtiene mediante el doblado en el máquina plegadora; pero los elementos relativamente cortos se pueden doblar mediante las matrices montadas en las presnas.

En el proceso de doblado los factores importantes a considerar son: el radio de curvatura y la elasticidad del material. A ser posible, deben evitarse los cantos vivos; para este propósito se aconseja fijar los radios de curvatura interiores según la fórmula.

Generalmente son construidas para trabajar en chapa (fleje o lámina de acero), pero también son utilizadas en alambres y otros perfiles.

A continuación definiremos algunos elementos principales de una matriz de doblado:

ESPIGA: Es el elemento de unión de la matriz (cuerpo móvil) con la prensa. La prensa dará movimiento ascendente y descendente con la fuerza necesaria para doblar la chapa.

PORTA TOMA O PORTA PUNZÓN: Esta placa de acero por lo general con bajo porcentaje de carbono, no templable, permite fijar en ella la espiga y también el punzón.

PUNZÓN: Es la pieza que da forma en la chapa, generalmente la zona interior. Este punzón es de acero de buena calidad, templado, para no permitir que se deforme con las sucesivas dobladas (producción) que puede sufrir en su trayectoria de vida de la matriz.

REGLILLAS DE TOPE: Estas reglillas de acero tienen como función normalizar la ubicación de la chapa en la sufridera, así se permite dar seguridad que la chapa se encuentra en el centro de trabajo. Algunos proyectistas permiten regular estas reglillas para otras largos de chapa.

Estas reglillas las encontramos por lo general templadas aunque hay algunos diseños que permiten que no lo estén, calzando unas pastillas de acero templado en las zonas donde roza la tira del material (lado interior).
SUFRIDERA: Este cuerpo tiene como gran finalidad moldear la forma de la chapa ayudada con la presión del punzón. En ella encontramos las radios necesarios (igual punzón) para permitir un doblado sin fisuras. La sufridera se fabrica de aceros de buena calidad por su excesivo esfuerzo a que es sometida. Su tratamiento térmico es templado para no permitir deformaciones que podrían cambiar su forma o ángulo de desarrollo.

8.3.1.1 CONCEPTOS BASICOS DE DOBLADO

Con una matriz simple de doblar podemos conseguir varios perfiles cambiando solamente la posición de la pieza para obtener la forma deseada.

Cuando se proyecta la construcción de una matriz de doblado es necesario considerar varios aspectos que determina la calidad de la pieza, por lo tanto es conveniente tener definido los conceptos básicos que pueden ocurrir en la pieza durante el doblado:

- a) Conocer el radio mínimo para evitar el debilitamiento de la pieza.
- b) Conocer los fenómenos de deformación y recuperación elástica del material.
- c) Determinar la línea neutra en el perfil de la pieza.
- d) Estudiar la forma más simple de construcción.
- e) Calcular el esfuerzo de doblado.

8.3.1.2 FENOMENO DE DOBLADO

Cuando sometemos las piezas a la acción de doblado, en éstas ocurren dos fenómenos físicos que debemos tomar en cuenta:

- a) La pieza se comprime por su parte interior y se estira por la exterior y hay una parte donde está contenida la “línea neutra”. (ver pág. siguiente)

- b) Si el doblado se realiza en forma correcta, el espesor del material permanecerá uniforme. Con ciertas formas de doblado puede producirse un adelgazamiento o por el contrario aumentar el espesor; esto puede evitarse si las formas del punzón y matriz mantienen en su parte activa las dimensiones correctas. (ver pág. siguiente)
8.3.1.3 **RECUPERACION ELASTICA**

La recuperación elástica consiste en que la pieza doblada, tiende, por elasticidad a recuperar su forma original y el ángulo de doblado por consiguiente queda mayor, por eso es preciso dar un ángulo menor que el necesario para que después de la recuperación elástica, la pieza quede de la forma deseada.
8.3.1.4 RADIO MINIMO

Determinar el ángulo menor teóricamente es muy difícil, ya que depende mucho de la calidad del material, por eso es conveniente hacer un ensayo previo con el material en cuestión.

Cuando se intenta doblar violentamente una chapa con un radio muy pequeño, ésta puede agrietarse, romperse o quedar demasiado débil, por lo tanto, el radio interior debe ser determinado por el “radio mínimo”.

Para calcular el radio mínimo prácticamente se pueden tomar los valores siguientes:

a) Para materiales blandos o recocidos = 1 a 2 veces el espesor
b) Para materiales duros o agrios = 3 a 4 veces el espesor
8.3.1.5 **CALCULO DEL DESARROLLO (DOBLADO)**

Es el cálculo necesario para determinar las dimensiones de una pieza que será sometida a la acción del doblado.

La determinación de un desarrollo se hace sumando el largo de la línea neutra de las partes planas y curvas. La línea neutra en las partes planas se ubica en el centro del espesor y en las curvas se ubica aproximadamente dividiendo el radio interno con el espesor del material. Con el resultado se obtiene un coeficiente con el cuál se consulta la tabla para obtener el porcentaje del espesor donde está ubicada la línea neutra.

![Diagrama de desarrollo](image)

\[
\text{COEFICIENTE DE} = \frac{\text{Radio Interno}}{\text{Espesor}}
\]

LINEA NEUTRA

La tabla siguiente nos da los valores prácticos de la línea neutra en relación a la fórmula presentada.

<table>
<thead>
<tr>
<th>N°</th>
<th>espesor del material</th>
<th>30%</th>
<th>34%</th>
<th>37%</th>
<th>40%</th>
<th>41%</th>
<th>42%</th>
<th>44%</th>
<th>46%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>0.46</td>
<td>0.14</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.23</td>
</tr>
<tr>
<td>24</td>
<td>0.61</td>
<td>0.18</td>
<td>0.21</td>
<td>0.22</td>
<td>0.24</td>
<td>0.24</td>
<td>0.25</td>
<td>0.27</td>
<td>0.28</td>
<td>0.30</td>
</tr>
<tr>
<td>22</td>
<td>0.76</td>
<td>0.23</td>
<td>0.26</td>
<td>0.28</td>
<td>0.30</td>
<td>0.31</td>
<td>0.32</td>
<td>0.33</td>
<td>0.35</td>
<td>0.38</td>
</tr>
<tr>
<td>20</td>
<td>0.91</td>
<td>0.27</td>
<td>0.31</td>
<td>0.34</td>
<td>0.36</td>
<td>0.37</td>
<td>0.38</td>
<td>0.40</td>
<td>0.42</td>
<td>0.45</td>
</tr>
<tr>
<td>18</td>
<td>1.21</td>
<td>0.36</td>
<td>0.41</td>
<td>0.45</td>
<td>0.48</td>
<td>0.50</td>
<td>0.51</td>
<td>0.53</td>
<td>0.55</td>
<td>0.60</td>
</tr>
<tr>
<td>16</td>
<td>1.52</td>
<td>0.46</td>
<td>0.52</td>
<td>0.56</td>
<td>0.61</td>
<td>0.62</td>
<td>0.64</td>
<td>0.67</td>
<td>0.70</td>
<td>0.76</td>
</tr>
<tr>
<td>14</td>
<td>1.90</td>
<td>0.57</td>
<td>0.65</td>
<td>0.70</td>
<td>0.76</td>
<td>0.78</td>
<td>0.80</td>
<td>0.84</td>
<td>0.86</td>
<td>0.95</td>
</tr>
<tr>
<td>12</td>
<td>2.66</td>
<td>0.80</td>
<td>0.90</td>
<td>0.98</td>
<td>1.06</td>
<td>1.08</td>
<td>1.12</td>
<td>1.16</td>
<td>1.22</td>
<td>1.32</td>
</tr>
<tr>
<td>10</td>
<td>3.42</td>
<td>1.02</td>
<td>1.16</td>
<td>1.26</td>
<td>1.36</td>
<td>1.40</td>
<td>1.44</td>
<td>1.50</td>
<td>1.58</td>
<td>1.70</td>
</tr>
<tr>
<td>8</td>
<td>4.18</td>
<td>1.25</td>
<td>1.42</td>
<td>1.57</td>
<td>1.67</td>
<td>1.71</td>
<td>1.75</td>
<td>1.84</td>
<td>1.92</td>
<td>2.09</td>
</tr>
<tr>
<td>6</td>
<td>4.93</td>
<td>1.48</td>
<td>1.58</td>
<td>1.82</td>
<td>1.97</td>
<td>2.02</td>
<td>2.07</td>
<td>2.16</td>
<td>2.26</td>
<td>2.46</td>
</tr>
</tbody>
</table>

54
A. Cálculo de desarrollo de la LINEA NEUTRA.

coef. = \(r/E = 3/1.9 = 1.5 \)

El coeficiente 1.5 indica que la LINEA NEUTRA pasa a 41% del espesor (ver tabla), es decir a 0.78 mm.

El valor R (radio de curvatura) hasta la LINEA NEUTRA será:

\[
R = r + 0.78 = 3 + 0.78 = 3.78 \text{ mm;}
\]

\[
D = 2 \times 3.78 = 7.56 \text{ mm}
\]

Desarrollo de la LINEA NEUTRA L

\[
L = 2A + \pi \times D \times \alpha / 360 = 2 \times 6 + 3.14 \times 7.56 \times 90 / 360 = 2A + (\pi \times D \times \alpha) / 360 = 12 + 5.93 = 17.93
\]

B. Cálculo de desarrollo de la LINEA NEUTRA

coef. = \(r/E = 5/4.18 = 1.2 \)

El coeficiente 1.2 indica que la LINEA NEUTRA pasa a 40% del espesor, (ver tabla), es decir a 1.67 mm.

\[
R = r + 1.67 = 5 + 1.67 = 6.67 \text{ mm;}
\]

\[
D = 2 \times 6.67 = 13.34 \text{ mm}
\]

Desarrollo de la LINEA NEUTRA L

\[
L = 2A + B + (\pi \times D \times \alpha)/360
\]

\[
= 2 \times 5 + 20 + (3.14 \times 13.34 \times 2 \times 90)/360 = 30 + (3.14 \times 13.34)/2 = 30 + 20.94 = 50.94 \text{ mm}
\]
C. Cálculo del desarrollo de la LINEA NEUTRA

coef. \(= \frac{r}{E} = \frac{2}{1.9} = 1.0 \)

El coeficiente 1.0 indica que la LINEA NEUTRA pasa a 37% del espesor, (ver tabla), es decir a 0.70 mm.

El valor de R será:
\[R = r + 0.70 = 2 + 0.70 = 2.70 \text{ mm} \]
\[D = 2 \times 2.70 = 5.40 \text{ mm} \]

Desarrollo de la LINEA NEUTRA L

\[L = A + B + (\pi \times D \times \alpha)/360 = 20 + 30 + (3.14 \times 5.40 \times 45)/360 \]
\[= 50 + (3.14 \times 5.40)/8 = 50 + 2.12 = 52.12 \text{ mm} \]

DATOS:

- \(r = 2 \text{ mm} \)
- \(E = 1.1 \text{ mm} \)
- \(A = 20 \text{ mm} \)
- \(B = 30 \text{ mm} \)
- \(\alpha = 45^\circ \)

D. Calcular de desarrollo de la LINEA NEUTRA

coef. \(= \frac{r}{E} = \frac{4}{1.9} = 2.1 \)

Por la tabla, el coeficiente 2.1 indica 42% de espesor, es decir 0.80 mm.

R \(= r + 0.80 = 4 + 0.80 = 4.80 \text{ mm} \)
D \(= 2 \times 4.80 = 9.60 \text{ mm} \)

L \[= A + B + (\pi \times D \times \alpha)/360 \]
\[= 20 + 30 + (3.14 \times 9.60 \times 135)/360 \]
\[= 50 + (3.14 \times 9.60 \times 3)/8 = 50 + 11.30 \]
\[= 61.30 \text{ mm} \]

DATOS:

- \(r = 4 \text{ mm} \)
- \(E = 1.9 \text{ mm} \)
- \(A = 20 \text{ mm} \)
- \(B = 30 \text{ mm} \)
- \(\alpha = 135^\circ \)
8.3.1.6 ESFUERZO DE DOBLADO

Es la fuerza necesaria para ejecutar la acción de doblado. Se calcula ésta para determinar la prensa adecuada para realizar el trabajo. Se determina el esfuerzo de doblado en "V" por la fórmula siguiente:

\[ED = \frac{(C \times R \times L \times c^2)}{h} \]

NOMENCLATURA:
- ED = Esfuerzo de doblado en kgf.
- C = Coeficiente según distancia h.
- R = Resistencia a la tracción del material en kgf/mm².
- L = Ancho a doblar
- E = Espesor del material.
- h = Distancia de arista a arista.

OBSERVACIÓN

Para doblados simples el coeficiente "C" es determinado por el gráfico y de acuerdo con el número de veces que el espesor del material está contenido en la distancia "h" se determina dicho coeficiente.
EJEMPLOS

1. Calcular el esfuerzo de doblado en "V" para la pieza de latón.

 \[
 ED = \frac{(C \times R \times E^2)}{h}
 \]

 \[
 \text{CALCULO}
 = \frac{(1.33 \times 35 \times 10 \times 9)}{24}
 = \frac{(4189.50)}{24}
 \]

 \[
 ED = 175 \text{ Kg.}
 \]

2. Calcular el esfuerzo de doblado en "U" para la pieza de latón.

 \[
 \text{FORMULA}
 ED = \frac{2}{3} \times R \times L \times E \times (1 + \frac{E}{h})
 \]

 \[
 \text{CALCULO}
 = \frac{2}{3} \times 35 \times 10 \times 3 \times (1 + \frac{3}{24})
 = \frac{2}{3} \times 35 \times 10 \times 3 \times 1.12
 = \frac{2325}{3}
 \]

 \[
 ED = 784 \text{ kgf}
 \]
OBSERVACION

Cuando el doblado es construido con sistema elástico, se suma el esfuerzo de los muelles o goma con el resultado anterior.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>$R = \text{Resist. de ruptura por tracción en kgf/mm}^2$</th>
<th>SUAVE</th>
<th>DURO</th>
</tr>
</thead>
<tbody>
<tr>
<td>plomo</td>
<td></td>
<td>25 - 4</td>
<td>-</td>
</tr>
<tr>
<td>Estaño</td>
<td></td>
<td>4 - 5</td>
<td>-</td>
</tr>
<tr>
<td>Aluminio</td>
<td></td>
<td>8 - 12</td>
<td>17 - 22</td>
</tr>
<tr>
<td>Aluminio duro</td>
<td></td>
<td>26</td>
<td>48</td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
<td>15</td>
<td>28</td>
</tr>
<tr>
<td>Cobre latón</td>
<td></td>
<td>22 - 28</td>
<td>30 - 40</td>
</tr>
<tr>
<td>Latón</td>
<td></td>
<td>28 - 35</td>
<td>40 - 60</td>
</tr>
<tr>
<td>Bronce laminado</td>
<td></td>
<td>40 - 50</td>
<td>50 - 75</td>
</tr>
<tr>
<td>Chapa de acero para embutido</td>
<td></td>
<td>32 - 38</td>
<td>-</td>
</tr>
<tr>
<td>Acero con 0.1% C</td>
<td></td>
<td>32</td>
<td>40</td>
</tr>
<tr>
<td>Acero con 0.2% C</td>
<td></td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>Acero con 0.3% C</td>
<td></td>
<td>45</td>
<td>60</td>
</tr>
<tr>
<td>Acero con 0.4% C</td>
<td></td>
<td>56</td>
<td>72</td>
</tr>
<tr>
<td>Acero con 0.6% C</td>
<td></td>
<td>72</td>
<td>90</td>
</tr>
<tr>
<td>Acero con 0.8% C</td>
<td></td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>Acero con 1% C</td>
<td></td>
<td>100</td>
<td>180</td>
</tr>
<tr>
<td>Acero al silicio</td>
<td></td>
<td>55</td>
<td>65</td>
</tr>
<tr>
<td>Acero inoxidable</td>
<td></td>
<td>65 - 70</td>
<td>-</td>
</tr>
</tbody>
</table>
8.3.2 **MATRICES DE CORTE**

8.3.2.1 **DEFINICION GENERAL**

Es un conjunto de piezas que relacionadas entre sí y adaptadas a las prensas, pueden ejecutar múltiples cortes en la tira o chapa para la producción de piezas en serie.

La complejidad en el diseño de matrices de corte, está directamente relacionada a las características de la pieza a fabricar; espesor, dureza del material, forma, etc. Debido a estas posibilidades, podemos encontrar matrices que pueden fabricar piezas en una operación, la cual llamaremos "matrices de una estación", y las que fabrican piezas en varias estaciones a las que denominaremos "matrices progresivas”

El esquema muestra una isométrica de una matriz de corte progresiva que está seccionada para mostrar su interior y describir sus piezas que más adelante serán definidas.

El producto obtenido de la chapa en la matriz se denomina (pieza), y el exceso de recortes de la tira (chapa), retal.
El punzonado es una operación mecánica con la cual, mediante herramientas especiales aptas para el corte, se consigue separar una parte metálica de otra obteniéndose instantáneamente una figura determinada.

Es una operación que va unida a los fenómenos de la transformación plástica y que, por otra parte, en la práctica, resulta casi siempre ligada al proceso del estampado propiamente dicho. El punzón, en el primer tiempo y prosiguiendo la presión que ejerce sobre la plancha, completa su labor con una compresión del material, con lo cual da lugar a una deformación plástica del medio interpuesto; se origina esta primera fase, un vientre cóncavo (fase b). Luego el punzón, encontrando libre el camino en la sufridera, prosigue su acción ocasionando una expansión lateral del medio plástico, sin remontar el material. El esfuerzo de compresión se convierte, un instante, igual a la resistencia a la cortadura. En estas condiciones, sobreviene un brusco desgarro y el trozo de la plancha sujeto al punzón, se separa del resto y cae al fondo de la matriz (fase c); hemos realizado un trabajo de cortadura.
8.3.2.3 DEFINICION DE PIEZAS QUE FORMAN UNA MATRIZ DE CORTE

A. ESPIGA O TOMA

1. Cabezal móvil (prensa)
2. Alojamiento para la espiga (prensa).
3. Espiga (matriz).
4. Tornillo fijación (prensa).
5. Mandril (prensa).
6. Conjunto superior (matriz).
7. Base del cabezal (matriz).

Es una pieza cilíndrica, de acero SAE 1020 a 1030 al carbono, que introducida y fijada en el alojamiento del cabezal móvil de la prensa, sostiene el conjunto superior.

ESPIGAS

Las espigas cilíndricas normalizadas, poseen un rebaje cónico, que tiene como gran ventaja permitir una buena fijación.
La parte cónica de la espiga tiene dos funciones:

a) Al apretar el tornillo de la prensa (cabezal móvil) la presión ejercida en esta parte levanta la espiga forzando el apoyo de la placa superior en el cabezal de la prensa.

b) Las rebadás formadas por el tornillo en la parte cónica (letra B) de la espiga no llega a tocar el alojamiento en el mandril y permiten una correcta fijación.

En el corte A-A, muestra la sección de la espiga, en la cual lleva una ranura “G”. Esta ranura se hace para poder fijar la espiga a la placa base superior de la matriz, por medio de una llave de espiga o comúnmente llamada “garza”.

TABLA DE DIMENSIONES DE LA ESPIGA

<table>
<thead>
<tr>
<th>Capacidad de la Prensa</th>
<th>D</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>r</th>
<th>D1 Métrica fina</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 tf/cm²</td>
<td>25</td>
<td>13</td>
<td>23</td>
<td>13</td>
<td>3</td>
<td>14 x 1.5</td>
<td>20</td>
<td>2.5</td>
<td>5</td>
</tr>
<tr>
<td>20 tf/cm²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18 x 1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 tf/cm²</td>
<td>38</td>
<td>19</td>
<td>34</td>
<td>19</td>
<td>4</td>
<td>27 x 1.5</td>
<td>30</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>50 tf/cm²</td>
<td>50</td>
<td>25</td>
<td>46</td>
<td>25</td>
<td>5</td>
<td>36 x 1.5</td>
<td>40</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>80 tf/cm²</td>
<td>73.5</td>
<td>31</td>
<td>57</td>
<td>31</td>
<td>6</td>
<td>44 x 1.5</td>
<td>50</td>
<td>6</td>
<td>12</td>
</tr>
</tbody>
</table>
B. **PLACA SUPERIOR O PORTA ESPIGA**

Es una placa de acero SAE 1020 a 1030 ó de hierro fundido, en la cual lleva fijada la espiga a través de una rosca en el centro de gravedad de la matriz, además, tiene por finalidad unir por medio de pernos la placa de choque y el porta-punzón. Es decir en esta placa se encuentra ubicada la perforación rosada para fijar la espiga y las perforaciones de los pernos y el alojamiento de la cabeza de éstos.

Sus caras opuestas deben ser paralelas y rectificadas. Sus perforaciones deben ser avellanadas y sus aristas con chaflán mínimo de 1.5 x 1.5 aproximadamente.

La placa superior de la figura, es una de las más simples en lo que se refiere a construcción, debido a que no lleva columnas. Generalmente es utilizada para matrices pequeñas y de baja producción.

Las placas superiores guiadas por columnas, son más favorables en lo que se refiere a capacidad de producción y durabilidad. Por lo general, se utiliza en matrices de mediana y gran envergadura.
C. **PLACA DE CHOQUE**

Es una placa de acero SAE 1060 a 1070 templada y rectificada por ambas caras, tiene por función soportar los golpes e impedir que las cabezas de los punzones se incorporen en el momento que éstos cortan la chapa.

Las perforaciones que lleva esta placa, solo son de un diámetro lo suficiente para que el perno pase holgadamente y pueda roscarse en la placa porta punzones. Sus espesores varían de acuerdo al material a cortar.

A continuación definiremos tres tipos de placas de choque:

a) Placa de choque enteriza.
b) Placa de choque en partes.
c) Discos postizos.

a. PLACA DE CHOQUE ENTERIZA

Se les denomina placa de choque enteriza por ser solo una pieza y por tener el mismo tamaño que la placa superior o porta toma, generalmente es utilizada en matrices pequeñas.
b. **PLACA DE CHOQUE EN PARTES**

Se usa cuando la matriz es grande. Por ser una placa relativamente delgada es fácil de deformarse, sobre todo cuando se templa. Por eso es necesario dividirla en 2 o 3 partes, según sea el caso.
Consiste en localizar trozos de aceros templados y rectificados solo en el área que el punzón está ubicado. Suelen ir insertos a presión en la placa superior. Este método permite economizar Acero en la construcción de una matriz.
D. **PLACA PORTA PUNZONES**

Es una placa de acero SEA 1020 a 1030 que va situada debajo de la placa de choque ó de la placa superior y se fija a éstas por medio de pernos unificando el conjunto. Su función es sostener los punzones, centradores, cuñas y las columnas de guías cuando fuese necesario, también es la placa que lleva las cavidades de las cabezas de los punzones y las perforaciones roscadas para que se amarre el bloque superior.

Sus caras opuestas deben ser paralelas y rectificadas, las perforaciones deben estar avellanadas y sus aristas con chaflán de 1.5 ó 2 x 2 mm. Aproximadamente.

Los alojamientos para colocar los punzones puede ser mecanizados o realizados manualmente.

Cuando la matriz se destina a trabajar en prensas automáticas, el ajuste de la placa porta-punzones, debe ser H7r6.

Para proyectar una placa porta-punzones se debe tener en cuenta:

a) Espesor adecuado para sostener los punzones sin deformarse.

b) Suficiente penetración de los pernos para soportar el esfuerzo de separación de los punzones. Después del corte.
En algunos casos donde los punzones son extensos o de formas complicadas, se suelen amarrar con pernos de alta resistencia a la tracción: por lo que la placa porta punzones solo tiene el alojamiento del punzón.
E. **PLACA GUÍA PUNZONES**

Es una placa de acero SAE 1020 a 1030 que tienen por función guiar los punzones y centrales a las cavidades de la sufridera, para que sin problemas corte la pieza a fabricar.

El espesor de la guía varía según el tamaño de la matriz, la carrera de la prensa y función de los punzones.

Los punzones deberán deslizarse por las guías de la placa a un ajuste deslizante H7g6. En caso de gran producción de piezas, podemos estudiar la posibilidad de colocar postizos o bujes de acero templado en las guías, evitando así el desgaste prematuro.
En la placa guía, se encuentran ubicados las cabezas de los pernos y los pasadores que amarran el conjunto inferior (fijo).

Es de primordial importancia que sus caras opuestas estén rectificadas paralelamente, que sus aristas sean remplazadas por chaflanes, sus perforaciones avellanadas y un bicel en la entrada de cada guía, para ayudar al punzón a buscar su posición.
En algunos casos, donde los punzones poseen forma irregular, las guías comunes están siendo reemplazadas por una resina que se adapta a cualquier forma y cualquier superficie garantizando ductibilidad y resistencia al roce.

La característica de esta resina es que mediante la adición de endurecedor, las moléculas de la resina se entrelazan en forma tridimensional, constituyendo una reacción química irreversible convirtiéndose en elemento sólido con buenas proporciones mecánicas y dieléctricas y de alta resistencia química.

Al no separarse sustancias volátiles, la construcción que se produce durante la solidificación es muy pequeña.

Las resinas poseen gran adherencia sobre casi todos los elementos constructivos, en especial sobre metales, previa preparación cuidadosa de los elementos a ensamblar, dado a lo cual se emplean para los siguientes casos:

a) Industria eléctrica
b) Revestimiento
c) Utillajes como: Construcción de herramientas y modelos, para la producción fiel de modelos y valores mecánicos destacados.
d) Fijación de guías y ajuste de punzones en matrícula de corte.
F. GUÍAS LATERALES

Son dos piezas de acero SAE 1040-1060 que se colocan en los laterales entre la placa guía punzones y la sufridera. Pueden ser templadas y revenidas, pero no es muy aconsejable debido a que su espesor es de una relativa delgadez, por lo tanto fácil de torcerse durante el tratamiento térmico.

Su función es guiar la tira de fleje o chapa a cortar, garantizando un camino seguro hasta punzinar el material.

El espesor de la guías será de 3 a 4 veces mayor que el de la tira a cortar. La distancia entre éstas debe ser igual al ancho de la tira, más una pequeña holgura que facilite el movimiento de la misma.

La longitud de la reglilla paralela puede ser igual al de la sufridera, pero se recomienda hacerlas más largas, con un soporte que les dé rigidez (lámina de acero 1.5 a 3 mm) y que les sirva de apoyo a la tira cuando entre en la matriz.

Las guías laterales van fijadas por medio de pasadores y pernos que conforman el grupo inferior. (fijo).
Las guías paralelas o reglillas paralelas, que no son templadas, se les agrega un postizo o un calce de acero templado puesto a presión, para evitar el desgaste en sus paredes laterales, debido al sucesivo tránsito de tiras a desarrollar.

Se aconseja que el calce redondo tenga una separación de 1.5 a 2 espesores desde su línea de eje hasta su zona de trabajo, esto para evitar que el calce se escape.
G. **PLACAS SUFRIDERAS**

Es una pieza de acero indeformable, un Boral12, un Veresta, un K450, Amutit, etc. Que como condición principal debe ser templada, revenida y rectificada. Está provista de cavidades filosas que tienen la mismas formas que los punzones, con sus respectivas tolerancias de corte, de acuerdo al material a cortar. Su principal función es reproducir las formas que hay en ella accionada por los punzones.

La sufridera como uno de los elementos más importantes de una matriz, posee en su diseño un importante número de consideraciones, que permiten una provechosa vida productiva.

A continuación explicaremos algunas de estas consideraciones y características funcionales de una sufridera de corte:

a. **TEMPLE**

La sufridera como requisito productivo, debe poseer sus filos intactos no importando la cantidad de cortes a que pueda ser sometida, además debe resistir la presión ejercida por los punzones al momento de cortar, debido a esta gran exigencia es necesario tratarla térmicamente con un templado y revenido según sea el caso. De esta manera garantiza una durabilidad en sus filos, no olvidando que cada cierto periodo productivo es conveniente hacer una mantención rectificando su superficie para mejorar sus filos.
b. **SECCIÓN DE CORTE PARALELA (VIDA)**

Se denomina sección de corte paralela o vida en una sufridera de corte, al el espesor de filo que se deja en la zona de la cavidad de corte, éste no excede de dos a tres veces al espesor de la chapa a cortar. (ver figura página anterior).

c. **ANGULO DE SALIDA**

Cuando se hace la cavidad de corte de una placa matriz ésta no es de medida uniforme ya que se ensancha en forma cilíndrica para facilitar la salida de las piezas. Este ensanchamiento ó inclinación no es más de 1° a 3° desde la línea inferior de la sección de corte hasta el extremo inferior de la placa sufridera (ver página anterior).

d. **ZONA DE ALTO RIESGO**

En el período de diseño al establecer las estaciones de trabajo, donde se generan los cortes para fabricar la pieza, es común encontrar complejos problemas de distribución, donde el espacio prácticamente no favorece.

No es aconsejable que dos cavidades filosas queden muy próximas a sí mismas, sobre todo cuando ambas poseen ángulos vivos o cuando poseen zonas muy delgadas, ya que en el momento de recibir el esfuerzo de corte aportado por el punzón, estará muy proclive a la trizadura o a la quebrazón.

Se aconseja en estos casos, replantear la ubicación de las cavidades, protegiendo las zonas débiles.

e. **TIPO DE SUFRIDERAS**

En la fabricación de matrices podemos encontrar un número importante de alternativas de diseño para construir placas sufrideras, según la complejidad que se presente para desarrollar una pieza. Las sufrideras van fijadas con pernos y guiadas con pasadores a la placa base de la matriz.

A continuación definiremos algunas de estas posibilidades de desarrollo:

f. **ENTERIZAS**

Se denomina enterizas a las placas sufrideras que son diseñadas o construidas de una sola pieza. La desventaja de este tipo de matrices es cuando se daña irreversiblemente una zona de corte, prácticamente se desecha por completo.
II. **SECCIONADAS**

Son las sufrideras que se construyen de varias piezas, que al unirlas en una posición, forman un solo cuerpo en común desarrollando las piezas que se desean fabricar. La ventaja que posee este sistema es facilitar su construcción y reparación de la placa sufridera ya que si un tramo se daña se fabrica nuevamente permitiendo economizar tiempo en la producción.

III. **ENCAJONADAS**

Cuando las placas o bloques sufrideras son muy grandes y las zonas de corte muy pequeñas, las sufrideras se pueden seccionar en pequeños bloques lo suficiente para permitir que la calidad de corte no se debilite. Esto se encajonan en la masa mayor, que recibe el nombre de placas porta sufridera, ésta se construye de acero de bajo porcentaje de carbono (SAE 1020 a 1045) permitiendo a la vez economizar acero de alta calidad. En el período de construcción estas sufrideras son insertadas a una presión ligera, guiados por pasadores y amarrados con pernos.

Este sistema facilita la construcción y reparación de las sufrideras.
iv. **SUFRIDERAS PEQUEÑAS**

Cuando las dimensiones de las cavidades de corte son muy pequeñas y presentan dificultad de construcción, se recomienda que las sufrideras vayan encajonadas dentro de una base que las contenga. Este tipo de sufrideras se hace para facilitar la construcción y reparación de éstas.

v. **POSTIZOS**

En ocasiones donde existen cavidades de corte complicadas, se pueden agregar a las sufrideras postizos con la forma que se desea, ya sea para solucionar un problema de construcción o abaratar materiales. Estos calces o postizos van alojados a presión y a su vez guiados por pasadores y amarrados con pernos pequeños. Estos postizos facilitan la construcción y reparación de las sufrideras.
H. **PLACA BASE**

Es una placa que sirve de apoyo a las. Es construida de acero SAE1020 a 1030 ó Hierro fundido. Por lo general su dimensión es mayor que la placa sufridera para permitir fijarla en la mesa de la prensa a través de bridas.

Si la pieza matrizada cae por la parte inferior de la sufridera gracias al ángulo de salida, la placa base también lleva estas salidas para facilitar el desalojo de la pieza.

En matricería podemos encontrar dos tipos de placas bases usadas comúnmente.

i. **SIMPLES**

Son placas lisas, sencillas, que solo poseen los agujero roscados para permitir el amarre del conjunto inferior, también lleva las perforaciones roscadas de los pernos, y el alojamiento de los pasadores y las cavidades de salida para la evacuación del material.
II. **SEMI EMBUTIDAS**

Son placas de mayor uso en matricería, presenta la ventaja de reforzar lateralmente la placa sufridera, permitiendo reducir la superficie y espesor de la misma. La profundidad del embutido no sobrepasa los 5 a 10 mm. Solo en caso donde la sufridera es sometida a grandes esfuerzos laterales, se puede profundizar más según sea el caso.
I. **PUNZONES**

Son piezas de acero indeformable, templadas y revenidas que efectúan el corte al introducirse en las cavidades de la sufridera, dando forma a la pieza deseada.

En el diseño constructivo, podemos encontrar una variada cantidad de alternativas para los diferentes casos. Podemos decir que un punzón consta de un cuerpo y una cabeza, ésta le permite oponer resistencia al momento de retirarse del corte efectuado en la sufridera.

Su cabeza la podemos diseñar de acuerdo a su forma o a la fuerza de resistencia al despegue del corte.

A continuación definiremos algunas formas constructivas de punzones de corte:

I. **SIMPLES**

Cuando su forma es sencilla y no presenta dificultad en su construcción:

II. **CON INSERTOS**

En algunos casos cuando el punzón presenta zonas débiles y son sometidas a grandes esfuerzos, se diseña calzándole postizos de acero de igual calidad que su masa mayor para que en casos de rotura permita una fácil reparación, al igual permite en algunos casos facilitar su construcción, debido a su forma compleja.
iii CON CAMISAS

Consiste en un punzón que está protegido dentro de una masa de similares características en cuanto a forma y material, que tiene el propósito de dar resistencia al punzón que aloja en su interior ya que por lo general se usa cuando éste es débil o es de un diámetro pequeño.

iv. APERNADOS

Cuando los punzones poseen forma irregular y tienen una base de apoyo suficiente, se opta por apenar el punzón a la placa porta punzones guiado por lo menos con dos pasadores.
v. **CON PASADORES**

Cuando los punzones son de poco espesor y de un largo considerable. Se pueden fijar por medio de 2 ó 3 pasadores que atraviesan perpendicularmente al punzón, este conjunto se embute en la placa porta punzones.
J. **JUEGO DE PUNZÓN Y SUFRIDERA**

Un factor que se debe tener en cuenta en el diseño de matrices de corte, es el juego que debe existir entre punzón y sufridera para permitir una mejor durabilidad entre ambos en el proceso de corte. Para separar correctamente la pieza de la tira de material, debe haber estrictamente el espacio correcto entre el borde del punzón y el borde cortante de la sufridera. Si la holgura o juego es insuficiente, el consumo de la prensa será excesivo. Además cuando el punzón se introduce en la tira del material las fracturas que se originan a ambos lados del material, lado del punzón y lado de la sufridera, no coincidirán y se formará una rebaba en la pieza o en el interior del agujero perforado.

Una holgura excesiva doblará la pieza recortada y producirá rebabas largas alrededor del borde. La aplicación de las holguras correctas proporcionará una pieza exenta de rebabas y con la porción pulida de su borde extendiéndose hasta la mayor profundidad posible. Esta parte pulida del borde será igual aproximadamente a una tercera parte del espesor de la pieza cortada.

La holgura correcta a aplicar depende del material, de su grado de dureza y de su espesor.

Una determinación justa del juego entre punzón y sufridera significa una prolongada duración de las aristas de corte de las herramientas. Según experiencias realizadas ha resultado, por ejemplo, que un juego de 0,015 mm. asignado a una pareja de herramientas, ha permitido cortar 100.000 piezas de un determinado material y espesor; con un juego de 0,075 mm. se cortaron 35.000 piezas y con un juego de 0,130 mm. solo pudieron cortarse 12.200 (en igualdad de condiciones y admitiendo una rebaba, sobre las aristas de las piezas cortadas, no superior a 0,15 mm.).

84
Al determinar los diámetros del punzón y de la sufridera, es necesario tener en cuenta que el diámetro de la sufridera determina las dimensiones de la pieza y por lo tanto, es necesario precisar exactamente tales dimensiones, el juego deberá obtenerse reduciendo el diámetro del punzón. El diámetro de éste, por el contrario, determina las dimensiones del agujero y por ello, se requiere igual exactitud; el juego debe obtenerse aumentando el diámetro de la sufridera. Esta norma sirve para todos los tipos de piezas.

Ejemplo 1: Si necesitamos cortar discos de chapa de acero duro, de diámetro 50 mm. y grueso 2,5 mm. ¿Qué dimensiones habrán de tener el punzón y la sufridera?

Solución: Del diagrama de la figura (juego de punzón y sufridera), se determina, tomando como base el espesor de la chapa y el tipo de material, un juego de 0,2 mm. El punzón deberá tener un diámetro de 50 - 0,2 = 49,8 mm. y la matriz el diámetro de 50 mm.

Ejemplo 2: Se deben hacer perforaciones de 30 mm. en varias piezas, de chapa de hierro de 2 mm. de grueso. ¿Cuál será la dimensión del punzón y cual la de la sufridera?.

Solución: El diagrama indica, tomando como base el espesor de la chapa y el tipo de material, un juego de 0,12 mm. el punzón deberá tener un diámetro de 30mm. y la sufridera de 30 + 0,12 = 30,12 mm.

Otras tablas muy usadas también para encontrar el juego punzón sufridera son la que ofrece J.R. Paquin.

J.1 CONSTANTES PARA JUEGO (J) PUNZON SUFRIDERERA

(J.R. Paquin)

Fórmula:

\[J = \text{espesor del material} \]

\[\quad \text{constante dada} \]

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>CONSTANTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobre</td>
<td>21</td>
</tr>
<tr>
<td>Latón</td>
<td>20</td>
</tr>
<tr>
<td>Acero Blando</td>
<td>17</td>
</tr>
<tr>
<td>Acero Semiblando</td>
<td>16</td>
</tr>
<tr>
<td>Bronce Fosforoso</td>
<td>16</td>
</tr>
<tr>
<td>Acero Duro</td>
<td>14</td>
</tr>
<tr>
<td>Acero Blando y Semiduro mayor a 6mm</td>
<td>10</td>
</tr>
<tr>
<td>Aluminio hasta 6mm</td>
<td>10</td>
</tr>
<tr>
<td>Aluminio mayor de 6mm</td>
<td>8</td>
</tr>
</tbody>
</table>

K. PASADORES

Son piezas cilíndricas generalmente construidas de acero plata, templadas y revenidas.
Su función es posicionar las placas de un conjunto, o piezas entre sí.

Su ajuste a las diversas placas debe ser H7 j6.

Se emplean como mínimo dos pasadores localizados lo más distantes entre sí, teniendo en cuenta la seguridad de la sufridera.

Según la necesidad, el alojamiento de los pasadores se efectúa en diversas formas.
Pasante

Cuando las piezas a posicionar permiten el taladro total.

Los pasadores que se ubican en agujeros no pasantes pueden ser huecos o tener un pequeño plano para permitir la salida de aire y su mejor extracción.

Las dimensiones de los pasadores se determinan por el espesor de las piezas y el esfuerzo que soportan.

<table>
<thead>
<tr>
<th>TABLA PRACTICA PARA USO DE LOS PASADORES</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIAMETRO (D)</td>
</tr>
<tr>
<td>L D 4 6 8 10 12 14 16 20</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>120</td>
</tr>
<tr>
<td>130</td>
</tr>
<tr>
<td>140</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>160</td>
</tr>
</tbody>
</table>
L. **PERNOS**

Dimensiones de pernos tipo ALLEN.

Notas: La medida de los pernos es dada por la cota “a”.

<table>
<thead>
<tr>
<th>PERNO – A</th>
<th>ALMOJAMIENTO – B</th>
</tr>
</thead>
<tbody>
<tr>
<td>d mm.</td>
<td>H/1” D A d1 B</td>
</tr>
<tr>
<td>3/16”</td>
<td>4.76 24 8.0 4.76 3.74 5/32”</td>
</tr>
<tr>
<td>1/4”</td>
<td>6.35 20 9.52 6.35 4.72 3/16”</td>
</tr>
<tr>
<td>5/16”</td>
<td>7.93 18 11.11 7.94 6.13 7/32”</td>
</tr>
<tr>
<td>3/8”</td>
<td>9.52 16 14.28 9.52 7.49 5/32”</td>
</tr>
<tr>
<td>7/32”</td>
<td>11.11 14 15.87 11.11 8.79 5/32”</td>
</tr>
<tr>
<td>1/2”</td>
<td>12.70 12 19.05 12.77 9.99 7/32”</td>
</tr>
<tr>
<td>5/8”</td>
<td>15.88 11 22.22 15.87 12.91 1/2”</td>
</tr>
<tr>
<td>3/4”</td>
<td>19.03 10 25.4 18.00 15.80 9/16”</td>
</tr>
<tr>
<td>7/8”</td>
<td>22.22 9 28.57 22.22 18.61 9/16”</td>
</tr>
<tr>
<td>1”</td>
<td>25.4 8 33.33 25.4 21.33 5/8”</td>
</tr>
</tbody>
</table>

Dimensiones de tornillos de cabeza cilíndrica

<table>
<thead>
<tr>
<th>PERNO – A</th>
<th>ALMOJAMIENTO – B</th>
</tr>
</thead>
<tbody>
<tr>
<td>d mm.</td>
<td>H/1” D A d1 q h</td>
</tr>
<tr>
<td>3/16”</td>
<td>4.76 24 5.0 3.74</td>
</tr>
<tr>
<td>1/4”</td>
<td>6.33 20 6.5 4.72</td>
</tr>
<tr>
<td>5/16”</td>
<td>7.93 18 8.0 6.13</td>
</tr>
<tr>
<td>3/8”</td>
<td>9.52 16 9.5 7.49</td>
</tr>
<tr>
<td>7/32”</td>
<td>11.11 14 11 8.79</td>
</tr>
<tr>
<td>1/2”</td>
<td>12.70 12 13 9.99</td>
</tr>
<tr>
<td>9/32”</td>
<td>14.28 12 14 11.58</td>
</tr>
<tr>
<td>5/8”</td>
<td>15.88 11 16 12.91</td>
</tr>
<tr>
<td>3/4”</td>
<td>19.03 10 19 15.80</td>
</tr>
<tr>
<td>7/8”</td>
<td>22.22 9 22 18.61</td>
</tr>
<tr>
<td>1”</td>
<td>25.4 8 25 21.33</td>
</tr>
<tr>
<td>5/8”</td>
<td>28.57 22 34 25.7</td>
</tr>
</tbody>
</table>
M. **RESORTES**

Son elementos que se emplean en matrícula para facilitar las operaciones de corte, doblado y embutido. Forman parte de los sistemas de retención y expulsión, se construyen de alambres de acero al silicio.

Son varios los tipos de resortes empleados, pero los más comunes son los helicoidales.

![Diagrama de resortes](image)

Nomenclatura

- \(d\) = diámetro del alambre
- \(D\) = diámetro interno
- \(p\) = paso
- \(r\) = radio medio
- \(L\) = largo del resorte sin carga
- \(L_1\) = largo del resorte con carga máxima
- \(n\) = número de espiras útiles
- \(N\) = número total de espiras
- \(C\) = carga máxima admisible en Kg
- \(f\) = cierre por espira
- \(F\) = flexión total activa

OBSERVACIÓN

En el campo de flexión \(T\) no hay aumento de resistencia y existe peligro de deformación permanente del resorte. Por lo tanto debe evitarse.
M.1 **FORMULAS**

\[
\begin{align*}
C &= \frac{d^4 \cdot 14}{r} \\
D &= 2 \cdot \frac{d^4 \cdot 14}{C} \\
N &= n + 1,5 \\
F &= f \cdot n \\
L &= P \cdot n + d \\
\end{align*}
\]

El aumento de 1,5 espiras en el número de espiras útiles es necesario para el apoyo de los extremos del resorte.

La resistencia del resorte aumenta hasta el límite máximo de flexión \(F \). En matrices donde los resortes deben soportar grandes esfuerzos, se pueden emplear resortes ubicados unos dentro de otro, cuya suma de esfuerzos es igual o superior a un resorte de alambre grueso que ocupa mayor espacio.

Cuando se colocan resortes dentro de otros se debe invertir la dirección de las espiras para evitar que se entrelacen.

La carga máxima admisible de los resortes debe ser igual o superior al esfuerzo necesario.

TABLA DE DIMENSIONAMIENTO

<table>
<thead>
<tr>
<th>d</th>
<th>D</th>
<th>P</th>
<th>c</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>3</td>
<td>3,5</td>
<td>1,7</td>
</tr>
<tr>
<td>1,5</td>
<td>10</td>
<td>5</td>
<td>5,5</td>
<td>3,7</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>8</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>2,5</td>
<td>17</td>
<td>11</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>14</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>3,5</td>
<td>25</td>
<td>17</td>
<td>17</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d</th>
<th>D</th>
<th>P</th>
<th>c</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>19</td>
<td>19</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>25</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>35</td>
<td>30</td>
<td>30</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
<td>35</td>
<td>35</td>
<td>19</td>
</tr>
<tr>
<td>12</td>
<td>45</td>
<td>40</td>
<td>40</td>
<td>21</td>
</tr>
</tbody>
</table>

\(d = \) Diámetro del alambre
\(D = \) Diámetro interno
\(P = \) Paso
\(C = \) Carga en Kg
\(f = \) Deformación por espira en carga máxima
N. COLUMNAS Y BUJES GUIAS

Las columnas y bujes de guía son piezas cilíndricas cuya función es mantener el alineamiento entre los conjuntos superior e inferior de una matriz. Pueden construirse de acero SAE 1040-1050, son cementadas templadas y deben rectificarse. Las tolerancias de fabricación de la zona de trabajo de las columnas y bujes responden a un ajuste H6 h5. Para la parte de fijación el ajuste es H6 p6.

Como mínimo se emplean dos columnas y su largo debe ser suficiente para impedir la separación de los conjuntos durante el trabajo.

Los diámetros deben permitir buenas condiciones de rigidez y fijación.

Es muy conveniente usar este tipo de guías en matrices de alto rendimiento, matrices de gran envergadura o en matrices de precisión.

Cuando una matriz de 2 a 6 columnas es simétrica se aconseja como diseño constructivo, dejar más gruesas una de éstas, un par de milímetros, para evitar confusiones en el momento de ensamblar ambos cuerpos.
8.3.2.4 **MATRIZ DE CORTE PROGRESIVA**

En la producción de grandes series, muchas veces es conveniente construir matrices especiales que sean aptas para trabajos progresivos. Se entiende por “Trabajo Progresivo” a la serie de operaciones sucesivas que transforman gradualmente la chapa o tira a fin de obtener la pieza deseada.

El objetivo principal es el de poder obtener, en un solo tiempo y con una sola estampa, una serie de operaciones sucesivas que, de otro modo, habrían de efectuarse con varias operaciones simples independientes. Debido a la gran variedad de piezas, no es posible definir las fases para la determinación de cada uno de los grandes inherentes a las fases siguientes. El proyecto de diseño en lo que se refiere a distribución de pasos o estaciones en la matriz para obtener el producto, se determina distribuyendo la posición de la pieza en la tira, de manera favorable a ocupar el máximo de la tira y que el retal sea mínimo.

En el momento de operar funcionalmente la matriz, los punzones y sufrideras deben garantizar un funcionamiento uniforme y seguro. Para tal fin, es necesario que los punzones, además de estar exactamente paralelos entre sí, actúen sincronizados, es decir, que den al mismo tiempo el golpe sobre toda la superficie de la pieza a trabajar.

La distribución de los punzones y sufrideras está directamente relacionada con la pieza a fabricar.
i. **IMÁGENES DE MATRICES PROGRESIVAS**

Matriz progresiva de 5 estaciones. (Grupo matrices abiertas con prensa chapas).

Matriz progresiva de 7 estaciones (con Prensa chapas).
Cuerpo fijo matriz progresiva 2 pasos.

Esta matriz corresponde al grupo de las guías de punzones fijos, pero la guía punzones se desalojó para poder apreciar la sufridera y el producto que desarrolla.
8.3.2.5 **TIPOS DE MATRICES PROGRESIVAS (DISEÑO)**

A. **CON PLACAS GUIAS DE PUNZONES FIJOS**

Las matrices de placas guías punzones fijos, se usa por lo general para matrices que cortan chapas desde 1 a 5 ó 6 mm. Ya que la chapa es difícil que se deforme al momento de cortar o al de despegarse del punzón. En estas matrices, la progresión de cortes (desarrollo) queda tapada con la placa guía, permitiendo economizar ya que su diseño no presenta grandes problemas constructivos.

Este tipo de matriz es recomendable cuando las piezas no son muy complicadas.

La característica principal de una matriz progresiva son sus estaciones (donde se generan los cortes) producidas por el punzón de paso.
B. **ABERTAS CON PRENSA CHAPA**

Son matrices que por lo general son usadas para la alta producción industrial, debido a esta exigencia deben llevar columnas y bujes guías.

Se denominan matrices abiertas con prensa chapas ya que la placa guía punzón va unida con pernos limitadores bajo una presión de resortes o goma que tiene por objetivo en el momento del corte presionar la chapa afirmando la para que éstos actúen sin problemas.

La ventaja que puede ofrecer, es que permite ver el trabajo que se efectúa haciendo posible evitar cualquier dificultad en la progresión de las fases; otra ventaja que ofrece es que se puede hacer limpieza en la matriz, sin desmontarla de la mesa.

La característica principal de una matriz progresiva son sus estaciones (donde se generan los cortes) producidas por el punzón de paso.
8.3.2.6 **PUNZON DE PASO O CUCHILLAS LATERALES**

El punzón de paso está construido de acero templado revenido y rectificado. Este punzón se ubica en la entrada de la matriz. Su función principal es permitir a través de su corte lateral dar "el paso" exacto para cada estación de trabajo, donde se generan los cortes u otras operaciones.

Entendemos por paso, al avance necesario que hace la tira de material (chapa) para llegar a una nueva estación y efectuar un nuevo corte. Podemos encontrar matrices de 1 a 13 estaciones aproximadamente para fabricar la pieza proyectada.

Se determina el largo del punzón de paso, sumando el largo de la pieza a cortar en sentido longitudinal de la tira, con la distancia mínima (1 espesor, con un mínimo de 1 mm) entre dos piezas.

8.3.2.6.a **EJERCICIOS**

NOMENCLATURA

e = espesor del material

1 = largo de la pieza

A = separación entre las piezas (1e) como mín. 1 mm.

B = desperdicio lateral (1,5e) como mín. 1,5 esp.

P = paso (largo punzón)

EJEMPLO 1

1. Primera estación e = 2 mm.
2. Segunda estación 1 = 18 mm.
3. Tercera estación A = 2 mm.
 B = 3 mm.

P = 1 + A = 18 + 2 = 20 mm.
EJEMPLO 2

e = 1 mm
l = 40 mm.
A1 = 2 mm.
A = 1 mm.
B = 1,5 mm.
L = 30 mm.

\[P = L + A1 = 30 + 2 = 32 \text{ mm} \]

A. DEFINICION DE CUCHILLAS DE AVANCE

Son punzones cuyo ancho equivale al paso de la matriz. Es usado en matrices de precisión para obtener rapidez en el trabajo y hace un corte lateral igual al paso. Se pueden presentar en dos formas:

i. SIMPLES

98
ii. **DOBLE**

Puede adaptarse para determinar el ancho de la pieza u obtener mayor precisión.

También se utiliza para lograr el total aprovechamiento de la tira.

OBSERVACIÓN:

Para evitar el desgaste de la guía causado por los golpes consecutivos de la tira y el roce de la cuchilla de avance se debe colocar un postizo de acero templado.
8.3.2.7 DISEÑO PUNZON DE AVANCE (PASO)

A. PERFIL RECTANGULAR

Es el de más fácil construcción, por lo tanto es más empleado.

Desventaja:
Tiene el inconveniente de sufrir desgaste en los cantos vivos dando origen a pequeños salientes en la tira que impiden el normal deslizamiento de ésta.

B. PERFIL CON RANURA

En este tipo de cuchilla los salientes formados en la tira no necesitan ser eliminados, pues no interfieren en el deslizamiento de ésta. Tiene la ventaja que no ofrece peligro de rotura por lo tanto es el más recomendado.
C. PROCESO DE CORTE POR ESTACIÓN

ESTACIÓN 1

ESTACIÓN 2

ESTACIÓN 3

ESTACIÓN 4
ESTACIÓN 5

DIBUJOS: Tira de recorte para una matriz de cinco estaciones.

DIBUJO: Tiras de recorte y partes separadas para la disposición de la figura.
8.3.2.8. **DISPOSICION DE LA FIGURA**

Los factores que determinan las dimensiones de una matriz y la posición de la abertura en la matriz propiamente dicha, son la forma y el tamaño de la pieza. Esta se presenta frecuentemente en forma irregular, tanto que, si viene dispuesta transversal o longitudinalmente en el centro de la matriz, ocasiona una notable pérdida de espacio con el consiguiente desperdicio de material. En este caso, es conveniente estudiar la mejor disposición, de modo que permita a todos los lados de la figura encontrar cada uno su sitio, reduciendo al mínimo la pérdida de material.

Sin embargo, algunas veces no es posible hacerlo a causa de ciertas irregularidades en los perfiles; pero se ha observado que, modificando oportunamente la silueta de la pieza sin alterar las características, es posible juntar una pieza con otra y obtener de este modo una disposición favorable para no dejar prácticamente inutilizada ninguna superficie. Si esto no resulta, se dispondrá la figura de modo que pueda seguirse el corte alternado, es decir: la primera serie de cortes se ejecuta sobre una cara de la tira de chapa y la segunda sobre la cara opuesta, es decir, empezando por la cabeza opuesta en la siguiente pasada.

Por medio de simples cálculos aritméticos y de pruebas gráficas, se puede definir cual es la disposición más conveniente a fin de lograr, en una menor superficie, el mayor número de piezas.

- **Disposición más conveniente de los elementos a obtener de una tira de chapa mediante el corte.**

Disposición más conveniente de los elementos a obtener de una tira de chapa mediante el corte.
Para que las figuras ocupen el mínimo espacio, deben cortarse en dos pasadas invirtiendo la tira de chapa.

Disponiendo las figuras en esta forma en la tira de chapa ocupan el menor espacio.

Disposición de arandelas agujereadas y cortadas sucesivamente. (Las partes rayadas indican la posición y la forma de los punzones.)
Ejemplo de corte simultáneo y sucesivo. (Las partes rayadas indican la posición y la forma de los punzones.)
8.3.2.9 **ESFUERZO DE CORTE**

Es la fuerza necesaria para efectuar un corte en el material y determina la capacidad en toneladas de la prensa a utilizar.

Para calcular el esfuerzo de corte podemos aplicar la fórmula siguiente:

FORMULA:

\[Ec = P \cdot e \cdot Rc \]

Ec = Esfuerzo de corte.

P = Perímetro de la pieza a cortar (en mm.)

e = Espesor de la chapa (en mm.).

Rc = Resistencia al corte del material (en Kgf/mm²).

EJEMPLOS:

1. Queremos saber el esfuerzo necesario para cortar la pieza de la figura siguiente. La resistencia del material a cortar es de 32 Kg/mm² y el espesor de la chapa tiene 1 mm.

![Diagrama 1](image1)

CALCULO

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ec</td>
<td>P.e.Rc</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Ec = 100 x 1 x 32 = 3.200</td>
<td>20</td>
</tr>
<tr>
<td>Ec = 3.200 Kgf/mm²</td>
<td>20</td>
</tr>
<tr>
<td>P = 100</td>
<td>30</td>
</tr>
</tbody>
</table>

Cuando calculamos el esfuerzo de corte con dos o más punzones en la misma matriz, se hace con la suma de los perímetros.

2. Calcular el esfuerzo de corte para obtener la pieza de la figura siguiente donde la *Rc* = 32 Kgf/mm² y el espesor es de 1 mm.

![Diagrama 2](image2)
CALCULO

\[Ec = P \cdot e \cdot R_c \]
\[Ec = 140 \times 1 \times 32 = 4.480 \]
\[Ec = 4.480 \text{ kgf/mm}^2 \]
\[P = 100 + 40 = 140 \]
\[P = 140 \text{ mm} \]

<table>
<thead>
<tr>
<th>P1</th>
<th>P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>40</td>
</tr>
</tbody>
</table>

OBSERVACION

El valor de la resistencia al corte se obtiene de la siguiente tabla y está relacionado directamente con el tipo de material a trabajar.

8.3.2.9.a TABLA DE RESISTENCIA DE CORTE EN Kgf/mm²

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>ESTADO BLANDO</th>
<th>ESTADO DURO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plomo</td>
<td>2-3</td>
<td></td>
</tr>
<tr>
<td>Estano</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Aluminio</td>
<td>6-11</td>
<td>13-10</td>
</tr>
<tr>
<td>Duraluminio</td>
<td>15-22</td>
<td>30-38</td>
</tr>
<tr>
<td>Siluminio</td>
<td>10-12</td>
<td>20</td>
</tr>
<tr>
<td>Zinc</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>Cobre</td>
<td>12-22</td>
<td>25-30</td>
</tr>
<tr>
<td>Latón</td>
<td>22-30</td>
<td>35-40</td>
</tr>
<tr>
<td>Bronce Laminado</td>
<td>32-40</td>
<td>40-60</td>
</tr>
<tr>
<td>Alpaca laminada</td>
<td>28-36</td>
<td>45-46</td>
</tr>
<tr>
<td>Plata laminada</td>
<td>23-24</td>
<td></td>
</tr>
<tr>
<td>Chapa de hierro comercial</td>
<td>30-35</td>
<td>40</td>
</tr>
<tr>
<td>Chapa de hierro embutible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapa de acero semiduro comercial</td>
<td>45-50</td>
<td>55-80</td>
</tr>
<tr>
<td>Acero laminado con 0.1% c</td>
<td>25</td>
<td>32</td>
</tr>
<tr>
<td>Acero laminado con 0.2% c</td>
<td>32</td>
<td>40</td>
</tr>
<tr>
<td>Acero laminado con 0.3% c</td>
<td>35</td>
<td>48</td>
</tr>
<tr>
<td>Acero laminado con 0.4% c</td>
<td>45</td>
<td>56</td>
</tr>
<tr>
<td>Acero laminado con 0.6% c</td>
<td>56</td>
<td>72</td>
</tr>
<tr>
<td>Acero laminado con 0.8% c</td>
<td>72</td>
<td>90</td>
</tr>
<tr>
<td>Acero laminado con 1% c</td>
<td>80</td>
<td>105</td>
</tr>
<tr>
<td>Acero al silicio</td>
<td>45</td>
<td>56</td>
</tr>
<tr>
<td>Acero inoxidable</td>
<td>50-55</td>
<td>55-60</td>
</tr>
</tbody>
</table>
8.3.3 MATRICES PARA EMBUTIR

8.3.3.1 CONCEPTO GENERAL DEL EMBUTIDO

La operación de embutir consiste en, transformar una chapa plana de metal laminado en un cuerpo hueco, en la simple operación de embutir no se debe modificar el espesor de la chapa; se deduce que la superficie de la pieza producida a de ser teóricamente equivalente a la de la chapa plana empleada. En la práctica esto no se verifica con exactitud.

![Diagrama de embutido](attachment:diagram.png)

DIBUJO: Demostración práctica de la deformación que ha experimentado el material de un recipiente embutido.

Antes de exponer el procedimiento base con la cual se realiza el embutido, es interesante examinar cómo se comportan las fibras del material de un disco de chapa que a de ser sometido a dicho proceso mecánico. Del simple examen práctico, que haremos a continuación, podremos conocer el carácter de las fuerzas y sus respectivos sentidos de orientación.

Observemos la figura anterior, suponemos que del disco A (desarrollo) de diámetro D se ha podido sacar el cilindro hueco B de diámetro “d” y altura “h”. Admitamos que la transformación se ha hecho a espesor constante. El disco en el fondo del cilindro B no ha sufrido ninguna deformación; la pared cilíndrica, por el contrario, ha sido deformada porque inicialmente componía la corona circular de anchura “h_0”, ósea delimitada por los diámetros D y “d” del disco A. Observamos en efecto, que el elemento “S_0” (indicado en el achurado sobre la corona del disco A) experimenta una variación durante el embutido, cambiando su forma trapezoidal por la rectangular “S” (indicado en el achurado en la pared de la pieza B); al mismo tiempo el elemento “S_0” se dobla 90° por consiguiente cada elemento durante el embutido estará solicitado por fuerzas radiales de atracción y por fuerzas tangenciales de compresión.
El material de la chapa, a pesar de todo también sufre un “estiramiento”; éste será tanto mayor cuanto mayor sea la presión ejercida por los órganos de sujeción del borde de la chapa.

DIBUJO: Algunas fases durante el proceso de embutido.

Por “sujetar”, no debemos entender aquí una sujeción propiamente tal, sino una simple adherencia del borde de la chapa sobre la superficie de apoyo, de modo que permita el deslizamiento en sentido radial sin producir deformaciones (pliegues).
8.3.3.2 DESCRIPCION DE UNA ESTAMPA PARA EMBUTIR

Antes de proceder al examen de otros factores relacionados con el embutido, es conveniente tener una nocion básica sobre la construcción de una matriz de embutido.

![Diagrama de una estampa para embutir]

- **ESPIGA**
- **PLACA PORTA ESPIGA**
- **PERNOS LIMITADORES**
- **RESORTE**
- **PLACA GUIA PUNZONES (APRETA CHAPAS)**
- **SUFRIDERA**
- **PLACA BASE**
- **PIVOTE TRANSMISOR**
- **RESORTE**
- **BASTAGO RIGIDO**
- **CON TUERCA Y GOLILLA A PRESIÓN**
Uno de problemas más importantes que se presentan en el embutido es el relacionado con la determinación de las dimensiones de la chapa de la que ha de salir el objeto deseado con el empleo del menor material posible. Con este fin se han hallado ciertos métodos que, a través de sucesivas pruebas y ensayo han conducido a una determinación basada sobre el cálculo que veremos a continuación. Este cálculo es fácilmente aplicable para los cuerpos huecos que tienen formas geométricas regular de líneas rectas o con sección circular. Para los cuerpos de diferentes formas o bien irregulares, no siempre se puede seguir un cálculo determinado: es necesario valerse de pruebas de embutida. Un recurso práctico el cortar aproximadamente el desarrollo de la plancha y realizar enseguida el embutido; se examina el contorno del objeto obtenido para determinar donde el material está en exceso donde hace falta; se corta de la chapa otro desarrollo corregido según el criterio correspondiente al caso y se hace un nuevo embutido de prueba; se vuelve a examinar donde el material está en exceso y dónde hace falta. Estas operaciones de pruebas se deben repetir hasta obtener la figura desarrollada que produzca el objeto embutido sin excesos de material y del mismo.

Si es necesario, se dejará en todo el contorno un margen de material que después del estampado deberá eliminarse mediante la muela. El desarrollo así obtenido además de proporcionar una cierta exactitud práctica, nos coloca en el camino de realizar las respectivas estampas o, según los casos, las molduras para el recorte. Es erróneo suponer que la superficie del desarrollo sea perfectamente igual a la superficie de la pieza embutida, puesto que el material se ha estirado. Como fuere, cada vez que sea posible, es necesario efectuar los cálculos para aproximarse más al desarrollo práctico. Dichos cálculos, para efectuarlos de modo sencillo se basan en la equivalencia de las superficies. Procedamos ahora en la busca de los diámetros de los discos desarrollados aplicando el referido principio de la equivalencia. Los valores de los diámetros desarrollados se podrá añadir un valor práctico.
Desarrollo de las piezas embutidas
Las fórmulas dan el diámetro D del disco desarrollado

<table>
<thead>
<tr>
<th>Forma del recipiente</th>
<th>Diámetro del disco $D =$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\sqrt{d^2 + 4,d,h}$</td>
</tr>
<tr>
<td></td>
<td>$\sqrt{d^2 + 4,d,h - r}$</td>
</tr>
<tr>
<td></td>
<td>$\sqrt{d_2^2 + 4,d_1,h}$</td>
</tr>
<tr>
<td></td>
<td>$\sqrt{d_3^2 + 4,(d_1,h_1 + d_2,h_2)}$</td>
</tr>
<tr>
<td></td>
<td>$\sqrt{d_4^2 + 4,(d_1,h_1 + d_2,h_2)}$</td>
</tr>
<tr>
<td></td>
<td>$\sqrt{d_5^2 + 4,d_1,h + 2,f,(d_1 + d_2)}$</td>
</tr>
</tbody>
</table>
Las fórmulas dan el diámetro D del disco desarrollado

<table>
<thead>
<tr>
<th>Forma del recipiente</th>
<th>Diámetro del disco $D =$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\sqrt{d_2^2 + 4(d_1 h_1 + d_2 h_2) + 2f(d_2 + d_3)}$</td>
</tr>
<tr>
<td></td>
<td>$\sqrt{d_1^2 + 2s(d_1 + d_2)}$</td>
</tr>
<tr>
<td></td>
<td>$\sqrt{d_1^2 + 2s(d_1 + d_2) + d_3^2 - d_2^2}$</td>
</tr>
<tr>
<td></td>
<td>$\sqrt{d_1^2 + 2[s(d_1 + d_2) + 2d_3 h]}$</td>
</tr>
<tr>
<td></td>
<td>$1,414 \cdot d$</td>
</tr>
<tr>
<td></td>
<td>$1,414 \sqrt{d^2 + 2d \cdot h}$</td>
</tr>
</tbody>
</table>
Las fórmulas dan el diámetro \(D \) del disco desarrollado

<table>
<thead>
<tr>
<th>Forma del recipiente</th>
<th>Diámetro del disco (D =)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[\sqrt{d_1^2 + d_2^2}]</td>
</tr>
<tr>
<td></td>
<td>[1.414 \sqrt{d_1^2 + f(d_1 + d_2)}]</td>
</tr>
<tr>
<td></td>
<td>[\sqrt{d_1^2 + d_2^2 + 4d_1h}]</td>
</tr>
<tr>
<td></td>
<td>[1.414 \sqrt{d_1^2 + 2d_1h + f(d_1 + d_2)}]</td>
</tr>
<tr>
<td></td>
<td>[\sqrt{d^2 + 4h^2}]</td>
</tr>
<tr>
<td></td>
<td>[\sqrt{d^2 + 4(h_1^2 + d_2h_2)}]</td>
</tr>
</tbody>
</table>
Las fórmulas dan el diámetro D del disco desarrollado

<table>
<thead>
<tr>
<th>Forma del recipiente</th>
<th>Diámetro del disco $D =$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\sqrt{d_2^2 + 4 , h^2}$</td>
</tr>
<tr>
<td></td>
<td>$\sqrt{d_2^2 + 4 , (h_1^2 + d_1 , h_2)}$</td>
</tr>
<tr>
<td></td>
<td>$\sqrt{d_1^2 + 4 , h^2 + 2 , f (d_1 + d_2)}$</td>
</tr>
<tr>
<td></td>
<td>$\sqrt{d_2^2 + 4 , (h_1^2 + d_1 , h_2) + 2 , f (d_1 + d_2)}$</td>
</tr>
<tr>
<td></td>
<td>$\sqrt{d_2^2 + 2,28 , r , d_2 - 0,56 , r^2}$</td>
</tr>
<tr>
<td></td>
<td>$\sqrt{d_2^2 + 2,28 , r , d_2 - 0,56 , r^2 + 4 , d_2 , h}$</td>
</tr>
</tbody>
</table>
Las fórmulas dan el diámetro \(D \) del disco desarrollado

<table>
<thead>
<tr>
<th>Forma del recipiente</th>
<th>Diámetro del disco (D =)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\sqrt{d_2^2 + 2.28 , r , d_2 - 0.56 , r^2})</td>
</tr>
<tr>
<td></td>
<td>(\sqrt{d_2^2 + 4 , d_2 , (0.57 , r + h) - 0.56 , r^2})</td>
</tr>
<tr>
<td></td>
<td>(\sqrt{d_2^2 + 2.23 , r , d_2 - 0.56 , r^2 + 2 , f , (d_2 + d_3)})</td>
</tr>
<tr>
<td></td>
<td>(\sqrt{d_2^2 + 4 , d_2 , (0.57 , r + h + \frac{1}{12} , f) + 2 , f , d_3 - 0.56 , r^2})</td>
</tr>
</tbody>
</table>
Las fórmulas dan el diámetro D del disco desarrollado

<table>
<thead>
<tr>
<th>Forma del recipiente</th>
<th>Diámetro del disco $D =$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\sqrt{d_2^2 + 2,28 r d_2 - 0,56 r^2}$</td>
</tr>
<tr>
<td></td>
<td>$\sqrt{d_2^2 + 4 d_2 (0,57 r + h) - 0,56 r^2}$</td>
</tr>
<tr>
<td></td>
<td>$\sqrt{d_2^2 + 2,28 r d_2 - 0,56 r^2 + 2 f (d_2 + d_3)}$</td>
</tr>
<tr>
<td></td>
<td>$\sqrt{d_2^2 + 4 d_2 (0,57 r + h + \frac{1}{12}f) + 2 f d_2 - 0,56 r^2}$</td>
</tr>
</tbody>
</table>
Desarrollo de una caja de base rectangular o cuadrada

Hemos visto como se presentan aproximadamente los desarrollo de cajas rectangulares y cuadradas. Consideraremos útil detenerse ahora sobre el modo de trazar el perfil del desarrollo de dichas cajas. Se empieza trazando el rectángulo de la base de lados \(a_1\) y \(b_1\) correspondiente a la longitud de los lados de la caja menos los dos radios de los cantos, es decir: \(a_1 = a - 2r\); \(b_1 = b - 2r\). A cada uno de estos dos lados se añaden dos desarrollos del correspondiente al radio del codo \(r\) más dos veces la altura \(h\) o sea:

\[
a_2 = a_1 + \pi r + 2h
\]

\[
b_2 = b_1 + \pi r + 2h
\]

y se traza el rectángulo máximo que contiene el perfil desarrollado. El límite de los chaflanes correspondiente al de los cantos o esquinas es señalado por el círculo de diámetro \(D\) con centro en \(o\) menos el valor \(t\), el cual se verá más adelante. La medida \(D\) corresponde al diámetro del disco desarrollado de un cilindro imaginario de fondo esférico de radio \(r\) y altura \(h\):

\[
D = 1,414 \sqrt{d^2 + 2dh} \quad \text{(tabla anterior desarrollo de embutido)}
\]

DIBUJO: Desarrollo de una caja de base rectangular
8.3.3.4 **RADIOS DE EMBUTICION**

Es el redondeado que se hace en las aristas de la parte activa del punzón y sufridera para evitar desgarramiento y roturas producidas en el embutido. Este va en función de la chapa ha ser trabajada y prácticamente se consigue según las características del material, de la forma siguiente:

Para acero: \(r = 8 \) a \(10 \) espesores
Para aluminio: \(r = 4 \) a \(5 \) espesores
Para latón: \(r = 6 \) a \(8 \) espesores

OBSERVACIONES

a) Estos valores pueden disminuirse para embuticiones poco profundas.

b) No conviene aumentar el radio, porque si sobrepasamos los valores indicados podrían formarse arrugas en el material al embutir.

c) Redondear los bordes del punzón para evitar esfuerzos inútiles en la chapa, el radio que se debe utilizar en este caso es arbitrario, pero no conviene que sea menor de dos veces el espesor de la chapa.
LUBRICACIÓN DURANTE EL EMBUTIDO

Para transformar una chapa plana en un cuerpo hueco mediante el embutido, se ha de proceder con una fuerza axial que castiga, entre ciertos límites, la fibra del material. El punzón y la matriz, a los cuales se les ha asignado la función de moldear, tienen que vencer el efecto producido por las fuerzas laterales; estas fuerzas originan un importante frotamiento entre las paredes. El material de la chapa, que tiende a escaparse y dominar desordenadamente, es obligado a extenderse uniformemente en el espacio definido entre el punzón y la matriz. En otros términos: se modifica la disposición interna de las fibras de la chapa y se les hace seguir otra nueva para hacer más fácil esta labor y reducir las posibilidades de romper las fibras del material, es necesario que durante el embutido se lubrifiquen abundantemente con sustancias fluidas todas las superficies de flotamiento del estampa con la chapa. De este modo se prolonga también la duración de la misma estampa. Según los diversos materiales con que se trabaje, el lubricante puede ser de varias clases. Es aconsejable referirse a la tabla que se expone a continuación.

Lubricantes a usar en la embutición, en relación al material a deformar.

<table>
<thead>
<tr>
<th>Tipo de trabajo</th>
<th>Tipo de lubricante</th>
<th>Lubricantes a usar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aceros carbono</td>
<td>Aceros inoxidable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y aleados</td>
</tr>
<tr>
<td>Embutición</td>
<td>Hidrosoluble</td>
<td>—</td>
</tr>
<tr>
<td>profunda</td>
<td>CC-2 o mezcla (1 p. DO-2A + 1 p. aceite mineral)</td>
<td>DO-29 o mezcla (2 p. DO-2A + 1 p. aceite mineral)</td>
</tr>
<tr>
<td></td>
<td>Oleosoluble</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>448 o DC-K</td>
<td>—</td>
</tr>
<tr>
<td>Embutición</td>
<td>Hidrosoluble</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Oleosoluble</td>
<td>—</td>
</tr>
</tbody>
</table>

Como complemento de las pruebas prácticas de embutir, puede escogerse el lubricante más adecuado, experimentando los diferentes tipos en las mismas estampas y con la misma chapa. El lubricante que produzca el mínimo aumento de superficie, o sea, el mínimo estiramiento, es el que mejor responderá a las exigencias del trabajo.
Las matrices progresivas para embutidos, en su mayoría, están unidas directamente con punzones y sufridera de corte. Estos permiten dar el desarrollo necesario en la tira para que luego sea embutida progresivamente hasta el corte final que es el que la separa de la tira para obtener la pieza.

En la foto encontramos una matriz progresiva de corte y embutido de cinco estaciones, del tipo abierta con prensa chapas. Esta matriz posee como diseño en una estación un embutido en un sentido y en la siguiente la invierte, esto para facilitar la entrega elástica de la chapa. También se puede apreciar que la tira está a cierta altura debido a que posee unos pequeños brazos levantadores bajo presión de muelle en su zona inferior, así facilitan el desplazamiento de esta por sobre la sufridera que posee los salientes que dan la forma a la pieza a embutir.

En algunos casos donde se necesita presión elástica constante se usan gomas de alta densidad en este caso poliuretano.
Matriz progresiva de corte y embutido sencillo de cuatro estaciones. Es una matriz abierta con prensa chapa. La pieza que fabrica durante su estampación son dos placas que forman parte de la cámara de gas de un calefón (mademsa).

Esta matriz de corte y embutido sencillo, fabrica la base superior de una cocina de material acero inoxidable. Es una matriz de una estación debido a la envergadura que ésta posee, pero proviene de una secuencia constructiva de uno o dos pasos. Para aclarar los detalles fíjase que la matriz no corta el desarrollo de la pieza y tampoco punzona las estrías en la parte superior de la pieza.
Esta matriz de corte y embutido sencillo de dos pasos y de tipo abiertas con presa chapas, estampa la cubierta superior de una estufa. Como se puede distinguir con claridad su masa rígida de base, es de material fierro fundido, recomendada para matrices de alta exigencia y de gran envergadura.

En el costado izquierdo punzona las canales y en el otro costado las embute dando forma definitiva al producto. El traspaso de una estación a otra es manual por medio de los operarios (prensistas).
EMBUTIDO PROFUNDO

No es tarea fácil establecer con exactitud el límite de la profundidad que se puede alcanzar con una sola operación de embutido; las dificultades consiguientes surgen al tener que establecer a cada momento, la relación exacta entre el diámetro y la profundidad del

DIBUJO: Número de operaciones necesarias con relación a la profundidad del embutido (para piezas pequeñas).

recipiente a obtener. Se puede llegar a conseguir de un modo aproximado y en una sola operación, una profundidad de embutido igual a la mitad del diámetro para las piezas pequeñas y de un tercio del diámetro para las piezas grandes (en chapa de acero dulce para embutidos profundos). Si han de obtenerse profundidades mayores, serán necesarias tantas operaciones por tantas veces la profundidad sea mayor del límite máximo arriba señalado. Las figuras que se refiere a casos de embutir objetos de pequeñas dimensiones de chapa de acero dulce y de forma cilíndrica, nos podrá aclarar mejor todo cuanto sea dicho.

La figura siguiente se refiere, en cambio al caso de embutir piezas de grandes dimensiones de formas cilíndricas.

El número n de operaciones necesarias para obtener un recipiente se expresa por:

$$ n = \frac{h}{(\varepsilon \times d)} = \frac{m \times d}{\varepsilon \times d} = \frac{m}{\varepsilon}, $$

En donde:

$m =$ número de los diámetros incluso infracciones contenidos en una profundidad
(por ejemplo: $m = h/d = 2d_3/d_1 = 2$)

$d =$ diámetro medio de recipiente;

$\varepsilon =$ un medio para piezas pequeñas; un tercio para piezas grandes.
DIBUJO: Número de la operaciones necesarias con relación a la profundidad del embutido (para piezas de grandes dimensiones).

La necesidad de ejecutar el embutido profundo en dos o más pasadas ha surgido ante la imposibilidad de que el material pueda resistir la elevada tensión radial, correspondiente al borde de la matriz que se desarrolla durante el proceso; o sea, debido al valor de la relación R/r, o bien D/d (entre el diámetro del disco a embutir y el diámetro del punzón; cuano más pequeño es el diámetro del punzón respecto al disco a embutir, tanto mayor será la presión necesaria para el embutido. Para que esta presión no provoque el desgarro de la chapa, no debe superar los límites de resistencia permitidos al material.

Para conseguir piezas profundas, es necesario establecer un orden de exigencia a la chapa para lograr la forma deseada.

La tabla de relaciones de embutido para piezas cilíndricas nos ofrece, para una rápida consulta, el modo de determinar si un disco de chapa de diámetro D puede embutirse en una sola o en varias pasadas, con un punzón de diámetro d y para una profundidad h. De esta manera, por ejemplo un disco de chapa de acero dulce de embutir profundo, de diámetro $D = 58 \text{mm}$; en efecto, calculando la relación d/D tenemos:

$$u = \frac{58}{100} = 0.58.$$

Este valor está comprendido en la tabla siguiente; por tanto, permite el embutido del disco en una sola pasada. La misma tabla contiene también la relación d/h correspondiente a varios materiales.
Las indicaciones de la tabla son válidas para los casos en que el sujetador está provisto de dispositivos elásticos, de resorte o de aire comprimido.

Relaciones de embutido para piezas cilíndricas huecas obtenidas de discos de chapa (Emprego del sujetador elástico)

<table>
<thead>
<tr>
<th>Material</th>
<th>Primera pasada</th>
<th>Pasadas siguientes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapa de acero de embutir</td>
<td>$d_D = \frac{d}{D}$</td>
<td>$h_d = \frac{h}{d}$</td>
</tr>
<tr>
<td>Chapa de acero para embutidos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>profundos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapa para carrocería</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de acero inoxidable</td>
<td>$0,52 \div 0,58$</td>
<td>$0,49 \div 0,67$</td>
</tr>
<tr>
<td>de aluminio dulce</td>
<td>$0,53 \div 0,60$</td>
<td>$0,44 \div 0,65$</td>
</tr>
<tr>
<td>de antieorodal recoída</td>
<td>$0,60 \div 0,70$</td>
<td>$0,25 \div 0,44$</td>
</tr>
<tr>
<td>de avionar recoída</td>
<td>$0,60 \div 0,70$</td>
<td>$0,25 \div 0,44$</td>
</tr>
<tr>
<td>de cobre</td>
<td>$0,55 \div 0,60$</td>
<td>$0,44 \div 0,57$</td>
</tr>
<tr>
<td>de latón</td>
<td>$0,50 \div 0,55$</td>
<td>$0,57 \div 0,75$</td>
</tr>
<tr>
<td>de cinc</td>
<td>$0,65 \div 0,70$</td>
<td>$0,25 \div 0,34$</td>
</tr>
</tbody>
</table>

Empleando el sujetador rígido las relaciones de embutido $\frac{d}{D}$ deben aumentarse del 5 al 10 % y las relaciones $\frac{h}{d}$ disminuirse en el mismo porcentaje.

Ejemplo. Un disco de chapa de acero extradulce, debe embutirse para obtener un recipiente cilíndrico de diámetro 20 mm. Y profundidad de 60 mm. Las dimensiones se consideran sobre la superficie neutra. Calcular el número de pasadas necesarias y dimensiones de la pieza para cada embutido.

Solución. Se procede en este orden:

Número de operaciones necesarias. Por considerarse pequeño el objeto, se podrá obtener con una serie de pasadas determinadas por la fórmula:

$$n = \frac{m}{\varepsilon}$$

Bien por la cual el denominador toma el valor: $\varepsilon = \frac{1}{2}$; y $m = h/d = 60/20 = 3$. Sustituyendo, se tiene los puntos

$$n = \frac{3}{1/2} = 6$$ (número de operaciones necesarias).

Diámetro del disco a cortar. Se obtiene de la fórmula:

$$D = \sqrt{a^2 + 4dh} \text{ (tabla VI)}$$

Sustituyendo:

$$D = \sqrt{20^2 + 4 \times 20 \times 60} = \sqrt{400 + 4800} = \sim \varnothing 72 \text{ mm.}$$
Números de las estaciones

Dimensiones alcanzadas en la primera pasada. Se alcanza una profundidad \(h = d/2 \); donde:

\[h = \text{altura de la pieza embutida}, \]
\[d = \text{diámetro de la pieza embutida (considerando siempre la superficie neutra)}. \]

La fórmula \(D = \sqrt{d^2 + 4dh} \) se puede escribir también:

\[D^2 = d^2 + 4dh. \]

Sustituyendo \(h \) por el valor \(d/2 \) se tiene:

\[D^2 = d^2 + 4d(d/2) = d^2 + 2d^2 \]
\[D^2 = 3d^2 \]
\[D = \sqrt{3d} = 1.73 \cdot d, \]

donde:

\[d = D/1.73 = 72 / 1.73 = 41.6 \text{ mm}. \]

y

\[h = 1/2 \cdot d = 41.6 / 2 = 20.8 \text{ mm}. \]
Dimensiones alcanzadas en la segunda pasada. - Procediendo análogamente en la primera pasada, pero siendo $h_1 = d_1$, se obtiene:

$$D = \sqrt[5]{d_1} = 2.23 \ d_1,$$

$$d_1 = D/2.23 = 72/2.23 = \approx 32.2 \ mm.$$

$$h_1 = d_1 = 32.2 \ mm.$$

Dimensiones lograda en la tercera pasada. - Del mismo modo, pero siendo $h_2 = 2d_2$, se obtiene:

$$D = \sqrt[9]{d_2} = 2.64 \ d_2,$$

donde:

$$d_2 = D/2.64 = 72/2.64 = 27.2 \ mm.$$

y

$$h_2 = 3/2 \ d_2 = 3/2 \times 27.2 = 40.8 \ mm.$$

Dimensiones logradas en la cuarta pasada. - Del mismo modo, pero siendo $h_3 = 2d_3$, se obtiene:

$$D = \sqrt[9]{d_3} = 3d_3,$$

donde:

$$d_3 = D/3 = 72/3 = 24 \ mm.$$

y

$$h_3 = 2d_3 = 2 \times 24 = 48 \ mm.$$

Dimensiones logradas en la quinta pasada. - Del mismo modo, pero siendo $h_4 = 5/2 \ d_4$, se obtiene:

$$D = \sqrt[11]{d_4} = 3.31 \ d_4,$$

donde:

$$d_4 = D/3.31 = 72/3.31 = 21.7 \ mm.$$

y

$$h_4 = 5/2 \ d_4 = 5/2 \times 21.7 = 54.25 \ mm.$$

Dimensiones logradas en la sexta pasada. - Finalmente, siendo $h_5 = 3 \ d_5$, se obtiene:

$$D = \sqrt{13 \times d_5} = 3.60 \ d_5,$$

donde:

$$d_5 = D/3.60 = 72/3.60 = 20 \ mm.$$

y

$$h_5 = 3 \ d_5 = * = \ mm. \ (dimensiones \ de \ la \ pieza \ acabada).$$
La pieza se obtiene en siete operaciones sucesivas. En el primer tiempo de la operación 1, se agujerea la cinta; avanza un paso y, en la operación 2, sufre el primer embutido; avanza otro paso y, en la operación 3, sufre otro embutido; en las operaciones 4, 5 y 6 se efectúa el estiramiento; en la operación 7 se separa la pieza ya terminada de la tira, pesando aquella 14.5 g. Una vez introducida la tira, las operaciones se desarrollan en un tiempo superpuesto, es decir, prácticamente en un solo tiempo, porque en una sola carrera de los punzones se realizan al mismo tiempo todas las fases, obteniéndose una pieza completa.
Ejemplo 2

DIBUJOS: Operaciones sucesivas de estampado que transforman progresivamente el disco a en una ojiva como en b, mediante varias estampas individuales.
Ejemplo 3: Matriz progresiva de corte y embutido de diez estaciones

Estampa de progresión para producir casquillos mediante embutidos sucesivos y cortes.
8.4 MATRICES EN CALIENTE

Este tipo de matrices se construyen de aceros especiales, capaces de resistir sin problemas un trabajo productivo a temperaturas elevadas.

Los productos que son fabricados en estas matrices tiene como única condición ser moldeadas a una determinada temperatura, ya que por otro método prácticamente sería imposible y a su vez demasiado caro.

Las matrices en caliente se pueden dividir por sus diferentes procesos como:

a) Forma.
b) Extrusión.
c) Inyección

a. FORMA

Son matrices que adaptan un volumen rígido a una figura determinada otorgada por la matriz. En este grupo encontramos las matrices de, forja, termoconformado, algunos tipos de acuñado, otros

b. EXTRUSION

Son procesos que permiten un almacenamiento de materia prima en estado líquido y que a través de un émbolo, presiona la materia a un extremo en la cual posee una matriz con una figura cualquiera, según sea el caso, obteniendo el producto en forma continua. Un ejemplo muy parecido al proceso es el apretar un tubo de pasta dental.

c. INYECCION

Son matrices que permiten obtener un producto determinado a través, de una descarga inyectada ocupando las cavidades de la matriz. El material inyectado por lo general es un material moldeable, en su mayoría algún tipo de polímeros según sea el caso.

A continuación, definiremos los tipos más representativos y más usados en la metalmeánica.
8.4.1 MATRICES DE FORJADO

Las matrices para forjado están construidas de aceros especiales capaces de resistir el impacto a altas temperaturas.

Su construcción se basa en la forma de la pieza, esto es porque su diseño como matriz no presenta complejidades. Para las matrices pequeñas el único sistema de guías de más frecuente usos, es a través de columnas abiertas con sus respectivos bujes, aunque en ocasiones aunque en ocasiones cuando las piezas son de considerable envergadura, se guían por medio de ángulos de acomodación en el cuerpo móvil y el cuerpo fijo (hembra - macho). Para fabricar piezas como cigüeñas es necesario utilizar un tipo de prensa llamada “martinetes”, que consiste en una robusta estructura central (cabezal), que cae violentamente (caída libre), sobre la zona de trabajo con la fuerza suficiente para dar forma a la pieza.
8.4.1.1 PRODUCTOS OBTENIDOS DE LAS MATRICES DE FORJA

De acuerdo a la norma establecida a todos los artículos o piezas que sean sometidas a presiones en su trabajo como cuerpo en sí, deben tener una estructura homogénea, sólida, rígida. Para ello se crean ciertos tipos de matrices que permitan transformar un material a cierta temperatura con las características pedidas.

FOTO: Artículos de grifería (válvulas, sifones etc.) construidos más frecuentemente con estos tipos de matrices.
FOTO: Otras piezas obtenidas del forjado.

8.4.1.2 DISEÑOS CONSTRUCTIVOS EN MATRICES DE FORJA

Como ya antes habíamos mencionado, el diseño de matrices de forja, se basa únicamente en la pieza a elaborar, teniendo presente los recursos con que se cuentan para fabricar matrices de tal envergadura como muestra la foto (cigüeñal de vehículo). Sus formas se logran hoy en día con una precisión sorprendente. De gran ayuda son máquinas como el pantógrafo y las máquinas de electroerosión.
En el cuadro superior de la foto, se muestra el producto (cigüeñal) después de la operación de forjado y mecanizado que luego será tratado térmicamente otorgándole dureza y resistencia al roce y para luego terminar con un rectificado cilíndrico en sus anillos de trabajo.

También existe la posibilidad de diseñar pequeñas matrices. La secuencia de trabajo de una matriz de forja, se puede apreciar en la siguiente fotografía.

![Fotografía de matrices de forja](image)

a) El cuerpo que está a la derecha se conoce como cuerpo móvil, éste debe poseer en su interior y en lugares estratégicos los botadores que desalojarán la pieza forjada. Además deberá estar bien afilada a la mesa de la prensa.

b) El cuerpo que está a la izquierda de la imagen se conoce como cuerpo fijo, que debe estar amarrado al cabezal de la prensa y estar bien centrado para que se realice una eficiente operación.

c) El tocho (cuerpo a forjar), se calcula para que en el momento de la forja tenga material suficiente para llenar las cavidades. Este puede ser de los siguientes materiales: Cobre, Bronce, Latón u otros que cumplan con las normas de compactibilidad y homogeneidad obtenidas después del forjado.

La temperatura de los tochos listos para forjar no debe exceder a sus límites de maleabilidad es decir, que no pierda rigidez en su estructura.

d) Es necesario lubricar las zonas de trabajo con aceite al grafito por cada golpe de forjado que reciba la matriz.

e) Una vez que los cuerpos de la matriz estén montados en sus respectivos lugares de la prensa o martinet, se deposita el tocho con la temperatura adecuada en el centro de la zona de trabajo de la matriz ó estampa. Luego el cabezal móvil de la prensa o martinet caerá sobre el tocho con la fuerza suficiente para moldear el esbozo de la pieza, que luego en otra operación se limpiarán y cortaran los excesos obtenidos en tal operación.
8.4.2 **MATRICES DE SOPLADO**

El objetivo de este trabajo, es dar una visión de lo que es la fabricación de pieza o artículos a través de moldes de soplado, los que presentan una cantidad importante en su utilización para embazar alimentos, cosméticos, aguas minerales e incluso vinos.

El polímero más usado en este tipo de envases es el policloruro de vinilo (PVC), es un termo plástico que sobrepasa a todos los otros plásticos en la variedad de posibilidades de transformación, y aplicación. Las numerosas posibilidades de tratamiento de los semiacabados son ventajas adicionales, que ha asegurado a este material por muchos años en uno de los primeros lugares en la producción de plásticos.

Aunque el PVC es un plástico (viejo) gracias a sus buenas propiedades de utilización se abren continuamente a este termoplástico, nuevos campos de aplicación.

El proceso que interesa en este informe es el relacionado con la transformación de PVC rígido en botellas, hay varias formas de transformación, tales como: Extrusión Soplado, Inyección Soplado, Estirado Soplado, Inyección Estirado Soplado y Extrusión Estirado Soplado.

Interesa también las características para el procesamiento del PVC, sus ventajas y dificultades, estabilidad térmica y dinámica, resistencia a acciones mecánicas y químicas, diseño de la maquinaria, procedimiento de transformación, diseño de envases, control de calidad, solución de problemas y las aplicaciones y mercados de envases.
8.4.2.1 **EL PROCESO DE SOPLADO**

El proceso de moldeo por soplado se utiliza para fabricar envases plásticos y consiste en las siguientes fases:

Fase 1: Una vez que la matriz está abierta, la máquina para soplado entrega la materia prima en forma de manga (hueca) a una temperatura que facilita el moldeo.

Fase 2: Las dos caras o mitades del molde se cierran alrededor de la manga o tubo (parison) que puede ser un simple tubo de plástico abierto en sus dos extremos, o una preforma cerrada en un extremo y roscada en el otro. Esta manga o preforma se ha ablandado mediante calor.
Fase 3:

- Un pin de soplado o una aguja se introduce en el Parison fundido y por medio de aire infla a éste.

- El Parison se infla hasta tocar las paredes del molde donde se solidifica por estar éstas enfriadas con la red de agua que circula en su interior a través de perforaciones.

Fase 4: Una vez solidificada la pieza moldeada, la matriz se abre permitiendo que los botadores desalojen la pieza de la cavidad.
8.4.2.2 SISTEMA CONSTRUCTIVO DE UN MOLDE PARA SOPLADO

El diseño para fabricar un molde de soplado, no presenta grandes dificultades constructivas exceptuando una posible figura con distintos relieves como podría ser un juguete: muñeca, pelotas de fantasía (con aire capturado) cierto tipos de cubo, etc.

Se fabrican con aceros que permitan un endurecimiento superficial (cementado) y una buena calidad superficial.

MOLDE DE SOPLADO
PARA FABRICAR UNA BOTELLA
8.4.2.3 **SISTEMAS DE ENFRIAMIENTO DE MOLDES**

LINEAS DE AGUA

A = 10 A 14 mm diámetro
B = 1 a 2 diámetros
C = 3 a 5 diámetros

SISTEMAS DE CANALES
8.4.2.4

NO MENCLATURA DE LA BOTELLA

8.4.2.5

NOMENCLATURA DE TERMINADO DEL CUELLO

"T" – DIAMETRO EXTERIOR DE LA ROSCA.
"E" – DIAMETRO INTERIORDE LA ROSCA Y EXTERIOR DEL CUELLO.
"I" – DIAMETRO INTERIOR DEL CUELLO.
"H" – ALTURA TOTAL DEL CUELLO.
"S" – ALTURA ENTRE TOPE DEL CUELLO Y PRINCIPIO DE LA ROSCA.
"L" – ROSCA ESTILO L.
"M" – ROSCA ESTILO M
Se puede evidenciar el momento en que los botadores se desplazan a través del molde para evacuar la pieza.
En la foto encontramos dos cabezales (sobre la matriz) el primero extrusiona el parison, luego se desplaza al costado para recibir el segundo paso; el soplado y enfriamiento, obteniendo así la pieza deseada.
 Debido a su gran producción en serie, fue necesario automatizar las maquinás para un mayor rendimiento productivo.

8.4.2.7 **PROPRIEDADES DE LAS PIEZAS TERMINADAS**

- Rigidez o flexibilidad
- Resistentes a:
 - Agrietamiento ambiental.
 - Ataque y penetración.
 - Deterioro por fluctuación de temperatura o radiación ultravioleta.
 - Olor y/o sabor.
 - Toxicidad.
 - Uniformidad en el espesor de la pared.
 - Deformación (encogimiento o torcícula).
 - Apariencia (brillo y defecto de superficie).
 - Peso de la pieza.

Las propiedades deseadas varían de acuerdo con el caso particular, de las propiedades como resistencia al agrietamiento ambiental, impermeabilidad y sabor no tienen mayor importancia para algunos productos como los jugos, pero requeridos en los envases para detergentes domésticos para alimentos.
8.4.3 MATRICES DE INYECCION PARA POLIMÉROS

8.4.3.1 INTRODUCCIÓN A LOS POLIMÉROS

Los polímeros se pueden clasificar como biológicos y no biológicos. Los polímeros biológicos forman la base misma de la vida, en todo orden natural proporcionando gran parte el alimento que el hombre necesita para subsistir.

Los polímeros no biológicos, son materiales sintéticos, fibras y elastómeros. En la actualidad estos elementos son generalmente necesarios en la vida del hombre, siendo esenciales para su vestido, habitación, transporte y comunicación, así como para las comodidades de la vida moderna. Un polímero es una gran molécula constituida por la repetición (poli) de pequeñas unidades simples.

En algunos casos la repetición es lineal, de forma semejante a una cadena formada por sus eslabones. En otros casos estas cadenas son ramificadas o interconectadas formando retículos tridimensionales.

La unidad repetitiva de un polímero es usualmente equivalente o casi equivalente a un monómero o material de partida del que se forma el polímero. Así tenemos por ejemplo que la unidad repetitiva del poli (cloruro de vinilo) es CH₂CHCl, y su monómero es el cloruro de vinilo, CH₂CHCl.

En la actualidad, son numerosos los polímeros que son usados como materia prima en la fabricación de plásticos.

A continuación se muestra un cuadro resumen, con las características de los polímeros más usados en la industria.
<table>
<thead>
<tr>
<th>NOMBRE DEL MATERIAL</th>
<th>NOMBRE COMERCIAL</th>
<th>FORMA</th>
<th>COLOR</th>
<th>APLICACIÓN</th>
<th>T° MAX.</th>
<th>Kcal/mhC°</th>
<th>C Keal/Kg C°</th>
<th>Fp/cc a 20 C°</th>
<th>%</th>
<th>COMPORTAMIENTO Y OLOR A LA LLAMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polifenol de alta densidad</td>
<td>Hostalen; Vestolen A.</td>
<td>Granulado; en grano</td>
<td>Incoloro, opaco, transparente y en todos los tonos</td>
<td>Fuentes, botellas, recipientes en general, doméstico y para transporte</td>
<td>105 °C</td>
<td>0.33</td>
<td>0.45</td>
<td>0.90-0.96</td>
<td>2.0 a 4.5</td>
<td>Inflamable, gotea olor a parafina.</td>
</tr>
<tr>
<td>Polietileno de baja densidad</td>
<td>Lunoil H; Trolen 200</td>
<td>Granulado; en grano</td>
<td>Incoloro, opaco, transparente y en todos los tonos</td>
<td>Recipiente domésticos de embalaje, recipientes pequeños y objetos de escritorio.</td>
<td>85-95</td>
<td>0.26</td>
<td>0.5</td>
<td>0.92-0.94</td>
<td>1.5 a 3.0</td>
<td>Inflamable, gotea olor a parafina.</td>
</tr>
<tr>
<td>Poliestireno normal</td>
<td>Polistiro 111, 1F; Vestron D, DLO</td>
<td>Granulados uniformes; cilíndricos, prismáticos, esféricos.</td>
<td>Transparente y coloreado hasta opaco</td>
<td>Piezas con pocas perforaciones en electricidad y telecomunicaciones, recipientes</td>
<td>60-75</td>
<td>0.14</td>
<td>0.3</td>
<td>1.65</td>
<td>0.4 a 0.6</td>
<td>Inflamable, formación de bolita, olor dulzón (estireno)</td>
</tr>
<tr>
<td>Polietileno anticalórico</td>
<td>Polytexyl 51, EH; Vestron N. S.</td>
<td>Granulado</td>
<td>Transparente opaco en cualquier tono</td>
<td>Objetos domésticos con esfuerzo térmico</td>
<td>70-95</td>
<td>0.5</td>
<td>0.6</td>
<td></td>
<td></td>
<td>Inflamable, formación de bolita, olor dulzón similar al de la goma</td>
</tr>
<tr>
<td>Polietileno anticalórico</td>
<td>Polystryxol EF; VES 540, 556, 551, 560, 570, 571.</td>
<td>Granulado</td>
<td>Colores opacos</td>
<td>Cajas de teléfono, radio y televisión, puertas y piezas para neveras, vasos, juguetes</td>
<td>60-70</td>
<td>0.4</td>
<td>0.6</td>
<td></td>
<td></td>
<td>Inflamable, formación de bolita, olor dulzón similar al de la goma</td>
</tr>
<tr>
<td>Cloruro de polivinilo posclorado</td>
<td>Trospastil, Vestolit, Vinalit, Hostastil</td>
<td>Polvo fino o grano</td>
<td>Colores de transparentes claros hasta opacos</td>
<td>Aseoerie y valvular, discos, piezas para aislamiento eléctrico, cubetas para reciclaje fotográfico, elementos para máquinas de refrigeración.</td>
<td>60-70</td>
<td>0.14</td>
<td>0.23</td>
<td>1.4</td>
<td>0.4 a 0.5</td>
<td>Arde en la llama, se estiaga al separarlo, se carboniza, olor a ácido clorhídico</td>
</tr>
<tr>
<td>Cloruro de polivinilo posclorado</td>
<td>Trospastil C; Solvithrallam, Himpegran.</td>
<td>Principalmente en grano, preparaciones especiales en polvo</td>
<td>Diversos tonos opacos</td>
<td>Tubos de desagüe, piezas de conmutación eléctrica, válvulas y elementos para instalaciones químicas.</td>
<td>80-90</td>
<td>0.4</td>
<td>0.6</td>
<td></td>
<td></td>
<td>Arde solo en la llama, olor irritante ácido clorhídrico</td>
</tr>
<tr>
<td>Cloruro de polivinilo flexible</td>
<td>Trospastil, Coroplast, Vestolit</td>
<td>Placas cilíndricas o cubos de 3 mm</td>
<td>Incoloro o colorado transparente u opacos</td>
<td>Elementos de amortiguación en construcción de radios y teléfonos, botas, zapatos, sandalias, suelas.</td>
<td>40-70</td>
<td>0.4</td>
<td>0.5</td>
<td>1.5 a 3.0</td>
<td></td>
<td>Inflamable según plástico, olor a ácido clorhídrico</td>
</tr>
<tr>
<td>Polipropileno</td>
<td>Hostalen PF; Luparen; Vestolen P.</td>
<td>Masa granulada</td>
<td>Incoloro, opaco, teñido, transparente y colorado</td>
<td>Recipientes, juguetes, artículos para mecánica fina, cascos protectores, tapones para señoras.</td>
<td>120-130 kebradizo 9°C</td>
<td>0.26</td>
<td>0.46</td>
<td>0.51</td>
<td>1.2 a 2.5 en parte de gran fluido 2.0 a 3.0, en parte de menos fluido.</td>
<td>Inflamable, gotea debil olor a paracloro</td>
</tr>
<tr>
<td>Copolímero estireno-ácetílicarboxílico</td>
<td>Luran, Vesteran</td>
<td>Granulado</td>
<td>Incoloro, tonos transparentes y opacos</td>
<td>Cajas diversas, piezas de aparatos de oficina y domésticas, vasija de calidad para envases.</td>
<td>85 °C</td>
<td>0.4</td>
<td>0.6</td>
<td></td>
<td></td>
<td>Inflamable con mucho hollín, similar al caucho</td>
</tr>
<tr>
<td>Acetato de celulosa</td>
<td>Becos, Collénos A.</td>
<td>Masa granulada</td>
<td>Transparente, incoloro y en todos los tonos</td>
<td>Botellas, peines, marcos de lente, mangos, cucharitas para muebles, juguetes, tacos, cajas para aparatos eléctricos</td>
<td>60-85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inflamable, gotea olor picante y papel quemado</td>
</tr>
</tbody>
</table>
MOLDES INYECCION DE PLASTICO (POLIMERO)

El molde de inyección para plásticos, está diseñado para recibir el material fundido (en estado líquido) proveniente de una unidad inyectora, para que la matriz pueda dar forma, enfriar y expulsar el artículo terminado.

El polímero entra al molde a través de la boquilla o manguito bebedero y es dispersado dentro del distribuidor conformado un sistema o red de flujo.

Del sistema distribuidor, el polímero es dirigido hacia el interior de las cavidades a través de pequeños orificios denominados canales de estrangulamiento. Al entrar el polímero en la cavidad, de inmediato comienza su solidificación, debido a los circuitos internos de flujo de agua diseñados en el molde. Una vez que el polímero es solidificado lo suficiente, el molde se separa expulsando la pieza formada.

Los moldes de inyección son estructuras complejas tanto en su diseño como su construcción, por lo tanto exige de manera directa un conocimiento amplio en el comportamiento de los aceros.
8.4.3.3 CONSIDERACIONES SOBRE DISEÑOS EN MOLDES DE INYECCIÓN

Al diseñar un molde de inyección conviene tener en cuenta las observaciones siguientes:

a) Conocer perfectamente el diseño de la pieza a moldear, establecer las líneas de partición, zona de entrada, lugar de los expulsores, aplicación del producto moldeado, y operaciones del montaje o piezas que encajan unas con otras. Revisar todas las dimensiones y tolerancias y comprobar las conicidades y detalles de la construcción del molde que puedan facilitar su fabricación.

b) Calcular el peso de la pieza y el número de cavidades a hacer, basándose en el tamaño de la máquina y las exigencias de la fabricación o de costos.

c) Determinar el tipo de máquina de moldeo (inyectora) y el efecto que puede tener en el diseño del molde.

d) A partir de las especificaciones del material, tener en cuenta su contracción, las características de flujo y abrasión y los requisitos de calentamiento y enfriamiento.

e) Cada ciertas partes de la cavidad o macho del molde, se han de construir de manera que la pieza moldeada presente ciertas marcas tales como una línea o una superficie interrumpida, el proyectista deberá asegurarse de que este defecto en el aspecto será comprendido y aceptado por el usuario del producto. En ciertos casos, los defectos ocasionados por montajes o ajustes escalonados serán censurables ya que pueden devenir ásperos, acumular suciedad y echar a perder su buen aspecto. Lo mismo puede decirse con respecto a las zonas donde se sitúen las entradas y los expulsores.

8.4.3.4 TIPOS DE MOLDES

Los diseños de los moldes de inyección dependen del tipo de material a moldear, necesitan diferentes principios de realizar la entrada y la expulsión para cumplir su objetivo con la máxima economía. Las exigencias de fabricación, vida del producto y costo del mismo dictarán cuál ha de ser el tamaño del molde, el porcentaje de mecanización y la eficiencia que se exigirá en el ciclo de moldeo.

Los tipos usados con más frecuencia son los siguientes:
A MOLDES DE DOS PLACAS

Los moldes de dos placas se caracterizan por tener solo un plano de partición, también porque las cavidades de la pieza a fabricar (hembra y macho) se encuentran posicionadas en placas distintas. El bebedero central va situado en la mitad fija del molde, y alimenta directamente al sistema de canales de alimentación en moldes de cavidades múltiples o sirve de entrada directa en el centro en moldes de una sola cavidad. La mitad móvil del molde contiene normalmente los postizos machos de la pieza a fabricar, el mecanismo de extracción (botadores y contrabotadores) y en la mayor parte de los casos, los sistemas de alimentación. La red de enfriamiento se maquinan en ambas placas rodeando las cavidades con el objeto de solidificar simultáneamente el polímero inyectado.

El molde de las dos placas, es el diseño básico del moldeo por inyección y todos los demás derivan de este esquema fundamental.
MOLDES DE TRES PLACAS

El molde de tres placas ofrece la posibilidad de separar la pieza de la mazarota al desmoldear. En este tipo de moldes, la pieza y el sistema de llenado no se sitúan en un plano de partición, sino que se utilizan dos.

El canal de distribución desemboca en una canal de comunicación elaborado en la placa intermedia, es decir, la placa situada entre los dos planos de partición.

El proceso de apertura del molde puede iniciarse en el plano de partición 1 o bien en el 2. Si se abre primero por el plano 1, Hay que cuidar, como en el caso de la entrada de colada en forma de túnel, de que la pieza quede unida al núcleo. Ello puede conseguirse mediante resaltos o por un enfriamiento a distinta temperatura del núcleo y la matriz. En el inicio de la apertura por el plano 1 se rompe la unión o uniones de la pieza con la mazarota y al continuar el proceso de apertura, aquélla es empujada hacia fuera del núcleo por un expulsor; cuando se alcanza una determinada carrera de apertura, la placa intermedia queda retenida mediante anclaje y con ello, se abre también el plano de partición 2, a fin de que la mazarota pueda ser expulsada con eyectores. Pero el molde puede abrirse también primero por el plano 2. Esto tiene la ventaja de poder realizar la pieza sin resaltos por no ser precisa su retención por el núcleo, ya que queda entre las placas de moldeo, hasta que se separa de la mazarota, adherida a la mitad del molde lado boquilla mediante los resaltos practicados por éste. Tras un nuevo movimiento de apertura efectuado utilizando barras de tracción, pueden expulsarse la pieza y la mazarota.

Para completar esta exposición indicaremos que se emplean también moldes de tres placas cuando hay que obtener por inyección piezas de grar. Superficie, las cuales no permiten inyectar desde un lado por resultar caminos de flujo demasiado largos.
C MOLDES PARA ROSCAS

Este tipo de moldes, utilizado con frecuencia para fabricar artículos roscados, tapas, uniones, extensiones, etc. No presentan grandes diferencias como diseño constructivo con los moldes anteriores, solo varía el sistema de extracción que es a través de un núcleo que tiene la forma de un elemento roscado. Las piezas pueden desmoldarse entonces desenroscando el núcleo, lo que puede efectuarse de diversos modos: en forma manual, semiautomática o automática. Para series reducidas y en casos especiales, en los que se exige una gran exactitud de las roscas, se emplean, para la fabricación de roscas interiores, moldes con núcleos recambiables, los cuales se introducen en el molde abierto. Transcurrido el ciclo, los núcleos sacan la pieza de la matriz. Se extraen entonces conjuntamente el núcleo y la pieza; esta última puede desenroscarse posteriormente a mano o mediante dispositivos apropiados, como un manubrio o un motor auxiliar. Para que la producción sea más racional, es conveniente trabajar con varios núcleos; además, no se desmoldea hasta que la pieza se ha enfriado hasta la temperatura ambiente, a fin de evitar su deformación durante el proceso de enfriamiento.

![Diagrama de moldes roscados](image_url)
D MOLDES CON COLUMNAS O CUÑAS OBLICUAS

Estos moldes permiten acceder a la construcción de piezas de formas complicadas, la característica principal de estos moldes, es que poseen carros móviles guiados, que son accionados por columnas o cuñas oblicuas. A medida que el molde se cierra, las columnas oblicuas desplazan los carros hasta llegar a su máximo cierre, obteniendo la forma de la pieza a fabricar.

El sistema de inyección es el mismo que los casos anteriores, solo cambia su diseño en los antes referido.

Podemos señalar que el montaje de las columnas inclinadas es más sencillo que el de las correderas tipo cuña. El ángulo de inclinación de las columnas puede oscilar entre los 15 y 25 grados, ya que de este modo, se han obtenido buenos resultados en la práctica. Los ángulos grandes facilitan el accionamiento, mientras que los pequeños producen un elevado esfuerzo sobre las columnas; para evitar el agarrotamiento, el ángulo no será en ningún caso menor de seis grados.

En el caso de las cuñas, la inclinación del brazo debe situarse entre 25 y 30 grados. El ángulo de las superficie de cierre puede ser más agudo, ya que así se alcanza una mayor fuerza de cierre.

![Diagrama de moldes con columnas oblicuas](image-url)
PLACA BASE

PLACA BASE INFERIOR

PARALELA

CARRERA

CARRIO DESPLAZABLE CON FORMA DE FIGURA

PLACA BASE

CUÑA

ALMA

CARRIOS DESPLAZABLES

ALMA

CARRIO DESPLAZABLES

CARRIO DESPLAZABLES
La masa procedente del cilindro de plastificación de la máquina llega a través de la boquilla de inyección, a la cavidad del molde medianamente enfriada, pasando por un canal en los moldes simples, o por un sistema de canales en los moldes múltiples o también, en los moldes simples de gran superficie. Estas vías de flujo se llaman canales de distribución y la masa que solidifica en ellos recibe el nombre de mazarota. Los canales tienen la misión de recibir la masa, dirigirla a la cavidad del molde y especialmente en moldes múltiples, distribuirla. En consecuencia, el sistema de alimentación en los moldes múltiples, comprende el bebedero (cono de mazarota, tronco de colada), la "araña" (distribuidor de colada) y los canales de estrangulamiento (nervios de colada, estranguladores, trabazones).

DIBUJO: Representación esquemática de un molde y del flujo del material en el mismo.

La disposición y la forma (tipo) del sistema de alimentación son de gran importancia para la calidad de una pieza. Elegiendo apropiadamente dicho sistema se puede influir en el tiempo de inyección, reducir los desperdicios y trabajos de acabado, o bien, con el bebedero puntiforme, ahorrar material.

El tipo de alimentación viene determinado por varios factores: lógicamente, en primer lugar, por el que significa conducir la masa de moldeo hacia la cavidad del molde con la mayor rapidez, sin obstáculos por el camino más corto, con mínimas perdidas de calor y presión y evitando todo lo posible las discontinuidades de fluidez en la pieza. En los moldes múltiples, se tiene además la exigencia de que el material debe alcanzar simultáneamente las diversas cavidades a igual presión y temperatura.

Tratándose de piezas de gran superficie, que deben ser inyectadas por varios puntos, hay que cuidar, finalmente, de que la masa tenga iguales recorridos de flujo a fin de que se mezcle en iguales condiciones en todos los frentes de desembocadura (fluidez homogénea). El sistema de alimentación se eligirá de modo que la mazarota tenga el mínimo peso, pueda separarse fácilmente de la pieza y no perjudique el aspecto de la misma. Así, la disposición de la forma y el sistema de llenado dependen de la configuración de la pieza y de la masa a elaborar. Las dimensiones del sistema de alimentación dependen incluso en gran medida del tamaño de la pieza.
8.4.3.6 CONFIGURACION DE LAS CANALES DE ENTRADA Y DISTRIBUCION

Los canales de distribución constituyen la parte del sistema de llenado que, en los moldes múltiples o en los simples con desvío del flujo une las cavidades del molde con el cono de entrada. Tienen la misión de conseguir que el material penetre en todas las cavidades simultáneamente y a igual presión y temperatura.

La masa plastificada penetra a gran velocidad en el molde refrigerado. La disipación de calor enfria y solidifica rápidamente la masa que fluye junto a las paredes exteriores. Al mismo tiempo que fluye por el centro queda aislada respecto a la pared del canal; originándose así un “núcleo plástico” por el que puede fluir la masa necesaria para el llenado del molde. Este “núcleo plástico” debe conservarse hasta que la pieza esté totalmente solidificada; de este modo adquiere plena eficacia la presión residual necesaria para compensar la contracción de volumen que ocurre durante el proceso de solidificación.

De esta exigencia deriva la geometría de los canales de distribución. Teniendo en cuenta las razones de ahorro de material y en virtud de las condiciones de refrigeración, se saca la consecuencia de que la relación superficie/volumen debe ser lo menor posible. Lógicamente, las dimensiones del canal dependen del tamaño de la pieza, del tipo de molde y de la masa a elaborar. Por lo general, ha de considerarse que la sección del canal ha de ser mayor cuanto mayor es la pieza, o bien, para piezas semejantes, cuanto mayor sea su espesor. Una sección grande favorece el llenado, ya que la resistencia del flujo es menor que en los canales estrechos. La masa de moldeo ha de ser tanto más fluida cuanto más largos sean los canales (vías de flujo).

Por otra parte, se tiene la exigencia de producir de un artículo con el máximo de rentabilidad. La mazorca extraída del molde influye en la cantidad de desperdicio y posiblemente, también en el tiempo de refrigeración cuando las secciones son excesivas respecto al tamaño de la pieza.

Adquiere, pues, gran importancia el dimensionado de los canales, tanto en lo que atañe a la calidad como en cuanto a la rentabilidad de la producción. El canal circular cumple óptimamente la condición de tener mínima la relación superficie/volumen; con este canal se producen las mínimas pérdidas de calor y por razonamiento. Para poder desmoldearlo con facilidad, tiene que dividirse diametralmente en partes iguales, abarcando la mitad del molde lado boquilla y la mitad lado extractor, lo que resulta de difícil realización.

Por otra parte, el mecanizado de este canal circular, al efectuarse en ambas mitades, encarece el molde. Por ello se elegirá una sección que se aproxime a la circular, pero de modo que el canal resultante pueda alojarse en una sola mitad del molde; para facilitar el desmoldeo, se aplica en la parte móvil del molde (lado eyección).
En la figura se comparan algunas secciones buenas y malas de los canales. La sección parabólica (centro, arriba) es la más utilizada, por aproximarse mucho a las exigencias citadas y proporcionar sólo un poco más de desperdicio que el canal circular.

En los moldes múltiples, los canales distribuidores tienen también la misión de conseguir que todas las cavidades se llenen simultáneamente. De producirse retrasos en el llenado de unas partes respecto a las otras, la presión residual sólo actúa su debido tiempo en determinadas cavidades, mientras que en el resto se produce prematuramente o demasiado tarde. El modo más sencillo de conseguir un llenado simultáneo consiste, lógicamente, en hacer de igual longitud todas las vías de flujo hacia las cavidades y en no modificar la sección de los canales de distribución y de estrangulamiento. Para obtener vías de flujo iguales, lo mejor es disponer las cavidades en círculo alrededor del punto central del bebedero; en tal caso, el sistema de distribución suele llamarse “araña” o bien de “estrella”. Una forma especial de este sistema lo es el canal anular; la masa plástica procedente del bebedero llega primeramente a un distribuidor principal en forma de anillo, el cual va conectado a las diversas cavidades mediante canales secundarios.

Si no es posible una distribución semejante, se emplea el llamado distribuidor “de hilera”. Este consta de un canal principal y diversos canales secundarios que terminan en el canal de estrangulamiento.

Aunque se adoptan secciones distintas para el canal principal y los secundarios, puede ocurrir que las cavidades se llenen de forma desfasada debido a las diferentes caídas de presión. Por esta razón, en la práctica, se hacen primero muy pequeños los canales de estrangulamiento que une el canal de alimentación con la cavidad del molde y posteriormente, en las inyecciones de ensayo se van ensanchando hasta que todas las cavidades se llenan simultáneamente.

A continuación diferentes tipos de distribución de piezas, en moldes de inyección:
8.4.3.7 TIPOS DE POSICIONES POSIBLES DEL SISTEMA DE LLENADO PARA MOLDES DE UNA SOLA CAVIDAD

A - PARA INYECTAR UN ANILLO, LO MÁS ADECUADO ES UN SISTEMA DE ENTRADA EN FORMA DE CUPULA
B - LA CUPULA NO HA DE TENER UNA SECCIÓN CONICA
C - DEBE EVITARSE UNA CUPULA DELGADA EN TODO EL CIRCULO

A - LOS ANILLOS INYECTADOS LATERALMENTE HAN DE TENER UNA CÁMARA DE REBOCADERO EN EL PUNTO OPUESTO, A FIN DE REDUCIR LA LÍNEA DE FLUIDO. EN ALGUNOS CASOS, BASTA UNA RANURA DE SALIDA DE AIRE (POR EJ: 4mm DE ANCHURA; 0.03mm DE PROF.)
B - DEBE EVITARSE LA INYECC. LATERAL DE UN ANILLO SIN CÁMARA DE REBOCADERO O RANURA DE SALIDA DE AIRE
C - ES CONVENIENTE LA INYECCION DE LAS CAPERUZAS POR

B - CUANDO LAS CAPERUZAS SE INYECTAN LATERALMENTE HAY QUE CONTAR CON LÍNEAS DE FLUJO EN LAS Zonas MARCadas
C - ESTAS CAPERUZAS INYECTADAS LATERALMENTE REPORTAN LÍNEAS DE FLUJO EN LAS Zonas MARCadas O IMPiden el llenado total (POR OCLUSIÓN DE AIRE)

A - LOS MANGUITOS CORTOS PUEDEN INYECTARSE CON Llenado DE CUPULA
B - LA INYECCION LATERAL REPORTA LÍNEAS DE FLUJO EN LAS Zonas MARCadas
C - LOS TUBOS HAN DE INYECTARSE APLICANDO EL SISTEMA DE Llenado ANULAR, ASÍ se EVitan LAS LÍNEAS DE FLUJO Y se OBTiene UNA BUENA POSIBILIDAD DE ACORDE EL NUCLEO DEL MOLDE

A - UN SISTEMA DE CUPULA DIVIDIDO PROPOrciona VARIas LÍNEAS DE FLUJO
B - UN SISTEMA DE CUPULA DIVIDIDO PROPOrciona VARIas LÍNEAS DE FLUJO
C - NO PUede EMPLEARSE UN Llenado EN FORMA DE CUPULA PARA TUBOS largos, YA que EL NUCLEO QuedA libre

A - SE HACEN FALTAS 2 O MÁS PUNTOS DE INYECCION EN PIEZAS CON CAMINOS DE FLUJO largos, EL PUNTO DE UNION SE BUSCARá EN UNA Zona EQUIDISTANTE
C - SE EVITARán LOS CAMINOS DE FLUJO DESiguALES

157
8.4.3.8 CANAL DE ESTRANGULAMIENTO

El canal de estrangulamiento es la parte del sistema de llenado que une la cavidad para la pieza con el canal distribuidor. Generalmente, es la zona de paso más estrecha de todo el sistema. Su tamaño y longitud vienen determinados por diversas exigencias.

La entrada debe ser lo más pequeña posible y de fácil desmoldeo, eligiendo su posición en la pieza de modo que no produzca marcas inoportunas. Con ello se evita un costoso trabajo posterior, que exige tiempo.

Sin embargo, no es posible hacer el canal de estrangulamiento tan pequeño como sería de desear, porque, por representar un cuello de la botella en el sistema de llenado, opone una considerable resistencia al flujo de la masa plástica, consumiéndose una parte importante de la presión de inyección. La resistencia ofrecida por el canal de estrangulamiento es tanto mayor cuanto más viscosa es la masa. Al fluir por canales estrechos, la masa, que recorre el sistema de llenado a alta velocidad durante la inyección, se calienta notablemente. Si el canal de estrangulamiento es demasiado pequeño, no sólo obstaculiza el llenado, sino que puede producir también un sobrecalentamiento, con la consiguiente degradación térmica de la masa. En cambio, si la sección es excesiva, la temperatura de la colada no aumenta o sólo un poco, y el material se solidifica en el canal prematuramente.

La contracción residual para compensar la contracción volumétrica producida al solidificarse la masa, no puede mantenérse durante suficiente tiempo. Las dimensiones del canal de estrangulamiento pueden determinarse según la habilidad del “ajustador”, que perfila mediante retoques la sección más favorable para inyectar en el molde.

Por tanto, la posición y la forma del canal de estrangulamiento quedan determinadas, en primer lugar, por el tamaño de la pieza, su forma y la viscosidad de la masa a elaborar.

A continuación señalaremos los tipos más comunes de canales de estrechamiento utilizados en matrizería:

A) Horizontal (lengueta)
B) De Tunel
C) Colada anular
A) **Horizontal:** (lengueta)

DENOMINACION DE UNA INYECCION DE DOS ENTRADAS

DENOMINACION DE UNA INYECCION DE UNA ENTRADAS

DETALLES DE UNA CANAL DE ESTRANGULAMIENTO
B) **DE TUNEL:**

CONFIGURACION CONSTRUCTIVA DE LA ENTRADA DE COLADA DE TUNEL PARA UN MOLDE

CONFIGURACION CONSTRUCTIVA DE LA ENTRADA DE COLADA DE TUNEL PARA UN MOLDE
Con este sistema de entrada, los canales de distribución llegan hasta cerca de la cavidad del molde. Allí son desviados y finalizan en un orificio cónico que une la cavidad con el sistema de llenado mediante el canal de estrangulamiento. Gracias al agujero oblicuo respecto a la pared lateral de la cavidad (túnel), se origina un canto agudo entre la pieza y el túnel, que corta la mazarota al moldear la pieza.

El diámetro de los canales de distribución deben ser en general unos 1,5 mm. mayor que el punto más grueso de la pieza.

C) COLADA ANULAR

Este tipo de entrada de colada se emplea principalmente para piezas anulares o en forma de manguito, donde el núcleo precisa doble apoyo debido a su longitud. La entrada de colada anular es muy semejante a la “cúpula”. La masa plastificada llega por el cono de mazarota a un canal anular que une la pieza con el canal de llenado. Durante el proceso de llenado, la estrecha sección que tiene la entrada actúa en primer lugar como estrangulación; por ello se llena primero uniformemente el canal anular con la masa que penetrará después en la cavidad a través de la entrada. Si bien se produce una línea de unión en el canal anular, en la pieza apenas será visible.

La principal ventaja de este tipo de colada consiste en que el núcleo puede apoyarse por ambos extremos. Con ello pueden producirse también piezas en forma de manguito relativamente largas, con espesor de pared uniforme. Las figuras muestran una entrada de colada anular que inyecta dos tubos alojados en un molde y otra que representa algunas cotas características para el dimensionado del canal anular.
EN FORMA DE CUPULA

Si por inyección, hay que obtener manguitos o piezas anulares y se actúa por uno o varios puntos mediante una mazorca puntiaguda o de barra, se producen las líneas de unión ya descritas, con las consiguientes desventajas. Además de la menor resistencia, hay que contar, en tales piezas, con deformaciones y desplazamientos del núcleo.

Para conseguir un llenado uniforme de toda la sección del anillo, se une el con de colada con un canal en forma de embudo, que suele designarse con el nombre de “cúpula”, el cual distribuye uniformemente la masa plástica sobre el diámetro mayor de la pieza; de este modo no puede producirse uniones de flujo. Existen dos posibilidades de unir la pieza al sistema de llenado: La pieza se une al canal de llenado a través de una entrada situada entre la cúpula y la pieza o bien se une directamente la pieza a la cúpula.

INFLUENCIA DEL CANAL DISTRIBUIDOR SOBRE LA CALIDAD DE LA PIEZA. SE PRODUCE UNA NOTABLE DEFORMACIÓN

PIEZA UNIDA AL SISTEMA DE LLENADO A TRAVÉS DE LA ENTRADA

PIEZA UNIDA AL SISTEMA DE LLENADO A TRAVÉS DE UNA CAMPANILLA
Este último tipo de unión exige, generalmente, una costosa elaboración posterior (torneado, fresado). Ambos sistemas proporcionan piezas de buena calidad y con escasa deformación. El tipo elegido depende principalmente del espesor de la pieza. Pero la construcción del sistema de llenado, que se sitúa como un embudo sobre la pieza, no permite apoyar el núcleo en ambos lados; en piezas largas, esto puede hacer que el núcleo se desplace en virtud de eventuales diferencias de presión en la masa que fluye. Para evitarlo, en tales piezas se emplea generalmente la entrada de colada anular.

8.4.3.9 **SALIDA DEL AIRE DE LOS MOLDES**

Al proceder al llenado del molde, la masa tiene que desplazar el aire que se encuentra en el mismo. Si este aire no tiene posibilidades de salida, queda comprimido en el punto más alto o en las líneas de unión de flujo, produciendo allí quemaduras en la pieza (efecto diesel). Estas zonas se caracterizan generalmente por tonalidades oscuras en la pieza que la hacen inservible, ya que frecuentemente el llenado no es tampoco completo. Por lo general, para la salida del aire no se precisan medidas especiales, ya que éste tiene suficientes posibilidades para escapar por el plano de partición tiene una determinada aspereza, por ejemplo, al ser esmerilado con un disco de grano grueso (grano 240). Las estrías de pulido señalarán hacia fuera: sin embargo, es preciso que el se llene de modo que la masa entrante en la cavidad desplace el aire hacia una junta de partición.

La forma y posición de la entrada determinan el proceso de llenado y, por tanto, también la posibilidad de eliminación del aire. Si la posición o forma de la entrada es tan desfavorable que no garantiza la salida de aire por una junta, habrá que tomar otras medidas para eliminarlo. Para ello no es indispensable elaborar canales especiales para la aireación, sino que muchas veces basta con construir la matriz en varias piezas. Las juntas de partición, especialmente las de longitud reducida por desalcanzado, son muchas veces suficientes para la salida del aire y tienen la ventaja de hacerse menos visibles en la pieza que en los canales de aire elaborados en el plano de partición o en otro punto.

Al proceder a la inyección, la masa rodea primeramente el núcleo en forma anular y sube después lentamente. El material cierra, pues, la cavidad por el plano de partición y desplaza el aire hacia el fondo del vaso; con ello, al comprimirse el aire, se produce un sobrecalentamiento, y el aumento de temperatura producido quema el material en esta zona. Sino puede tomarse la deducción de inyectar el vaso por el fondo, será necesario tomar otras medidas para la salida del aire. En el molde puede partirse la matriz en el fondo del vaso, creando así una nueva ranura de partición o también puede conseguirse la evacuación del aire gracias al montaje adicional de un troquel; desde luego, no puede evitarse una marca en el fondo del vaso, aunque una oportuna realización del troquel puede convertirla, a veces, la marca indeseable en una muesca ornamental.

Cuando las ranuras del plano de partición no son suficientemente permeables y el aire no puede escapar por los expulsores o troqueles auxiliares, habrá que reducir la superficie de junta para reducir el camino a recorrer por el aire, o elaborar canales de una milésima de mm de profundidad y alrededor de 1 mm de anchura en el plano de separación.
CONCLUSIONES

La matricería es un tema muy amplio, que abarca innumerables conocimientos en metalografía, tratamientos térmicos, máquinas, herramientas y mecánica en general.

El constante incremento tecnológico incorporado en las industrias, obliga directamente a una reestructuración que permita ir a la par con éstas, manteniendo su vigencia como proceso de fabricación productiva.

Un gran cambio que revolucionó el mercado metalmecánico, fue la aparición del plástico. Muchos artículos que antes eran fabricados a base de metal hoy en día son de plástico, en ellas existe una gran variedad de acuerdo a las propiedades que se deseen dar a un producto.

Hoy en día la matricería es un lenguaje universal, al igual que sus normas, materiales de construcción y diseños constructivos, permitiendo importar y exportar matrices en serie de acuerdo al diseño obtenido.

Este seminario se destinó en forma sencilla a dar un pie de inicio al mundo de la matricería, basado en imágenes en color y un lenguaje técnico aminorado sin salir del margen real.

En la elaboración del seminario se puede apreciar innumerables empresas que se desenvuelven en esta área de la mecánica pero no todas cumplen con una tecnología de punta para enfrentar un mercado exigente recurriendo prácticamente al ingenio para suplir esta necesidad.

Lo que se frecuenta hoy en día en empresas grandes y que no poseen un taller de matricería, es importar matrices del extranjero, países como Argentina, Brasil, Italia y España. Países con una capacidad de fabricación muy rápida, debido a su muy alto nivel en maquinarias y en procesos constructivos garantizando la efectividad de sus productos.

En Chile son muy pocas las empresas que pueden competir a este nivel, aunque las inversiones están orientadas al mismo lugar, la metalmecánica afronta nuevos aires de mercado.

Es importante incorporar un interés masivo y una exigente enseñanza profesional en carreras técnicas mecánicas y que las empresas se identifiquen con ello, aportando el verdadero espacio que estas necesitan para encontrar respuestas que hoy todavía no se solucionan.
BIBLIOGRAFÍA

- Tratamientos térmicos de los metales
 Manuales Delmar

- Folleto didáctico matrícula
 Inacap

- Tecnología de la electroeroción
 Engemaq

- Moldes para inyección de plásticos
 Dr. Ing. G. Menges
 Dr. Ing. G. Mohren

- Máquinas y herramientas modernas
 Mario Rossi

- El dibujo técnico mecánico
 Straneo y Consorte

- Estampado en frío de la chapa
 Mario Rossi

- Enciclopedia temática
 Larousse

- Memoria Universidad de Santiago de Chile
 Soplado de envases de P.V.C.
 Alumno: Gino Hernandez Machuca

- Folletos técnicos industriales