Mostrar el registro sencillo del ítem

dc.contributor.authorMagna-Veloso, Óscar
dc.contributor.authorFuentealba-Cid, Diego
dc.contributor.authorCavieres-Santibáñez, Diego
dc.date.accessioned2023-06-14T19:58:35Z
dc.date.available2023-06-14T19:58:35Z
dc.date.issued2021-12
dc.identifier.issn0716-0356
dc.identifier.urihttps://repositorio.utem.cl/handle/30081993/1442
dc.descriptionPág. 46-64, gráficos y tablas.es
dc.description.abstractThe need to protect computer networks from unknown attacks has influenced various works to develop and implement new methods to classify network connections, such as intrusion detection systems (IDS). Therefore, the purpose of this work is to compare the effectiveness of different multivariate analysis methods with software implementations of network intrusion detection systems (NIDS) and to propose a new NIDS model that improves protection against unknown attacks. The DARPA1998 dataset was used as a sample of a network under attack, and Snort software was used as a point of comparison for different methods tested. The performance of multivariate adaptive regression splines, support vector machine, and linear discriminant analysis was measured through a ROC curve, using the kdd99 derived dataset, showing that its accuracy exceeds the one that is achieved by the Snort software that uses rule-based detection.es
dc.description.sponsorshipTrilogía, Vol. 35 N° 46, diciembre 2021.es
dc.language.isoenes
dc.publisherUniversidad Tecnológica Metropolitana.es
dc.subjectSEGURIDAD EN REDESes
dc.subjectDETECCION DE INTRUSOSes
dc.subjectANALISIS MULTIVARIANTEes
dc.titleNetwork protection: intrusion detection with multivariate analysis techniques.es
dc.title.alternativeProtección de redes: detección de intrusos con técnicas de análisis multivariante.es
dc.typeArticlees


ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem